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Abstract

Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the
absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling
molecules that modulate various biological functions via activation of specific receptors and cell signaling
pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and
in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs
and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the
application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which
may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
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Introduction
Bile acids (BAs) are a large family of molecules that have a
steroidal structure and are synthesized from cholesterol in
the liver and actively secreted along with cholesterol,
bilirubin, and phospholipids into bile. Serving as import-
ant signaling molecules, BAs have important physiological
functions, including elimination of cholesterol, absorption
of fat and fat-soluble vitamins, and regulation of gut
microbiome (Molinaro et al. 2018; Monte et al. 2009; Tian
et al. 2020; Wahlstrom et al. 2016). Plasma membrane-
bound G protein-coupled receptors (GPCRs) and nuclear
receptors are the two types of BA-activated receptors
(Fiorucci et al. 2020). GPCRs include G protein-coupled
BA receptor 1 (Kawamata et al. 2003), muscarinic receptor
2 (Cheng et al. 2002) and sphingosin-1-phosphate-2
(S1PR2) (Nagahashi et al. 2016). Nuclear receptors include
farnesoid X receptor (FXR, also known as nuclear receptor

subfamily 1, group H, member 4, NR1H4), pregnane X re-
ceptor, constitutive androstane receptor, vitamin D recep-
tor, and small heterodimer partner (Shin and Wang 2019).
In liver, BAs inhibit their own synthesis; in liver and intes-
tine they regulate lipid and glucose homeostasis and sup-
press inflammation and fibrogenesis (Chiang 2009;
Gonzalez-Regueiro et al. 2017; Li et al. 2017a; Namisaki
et al. 2016; Pathil et al. 2014; Sinal et al. 2000). A disorder
of BA metabolism results in severe pathological outcomes,
such as cholestasis, hepatic steatosis, hepatic fibrosis, and
liver tumors (Arab et al. 2017a; Arab et al. 2017b; Suga
et al. 2019; Xie et al. 2016). Recently, research interest in
the role of BAs in enteric virus replication has surged. In
this review, we summarized biosynthesis, transport, and
metabolism of BAs, discussed the roles of BAs in regulat-
ing enteric virus replication and the use of BAs for cell
culture adaptation of fastidious enteric caliciviruses.

Biosynthesis, transportation and metabolism of
BAs
Biosynthesis of BAs occurs in hepatocytes via cyto-
chrome P450 (CYP) mediated oxidation of cholesterol
through 2 biosynthetic pathways, the classical and
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alternative pathways (Fig. 1) (Chiang 1998). Primary
BAs, cholic acid (CA) and chenodeoxycholic acid
(CDCA) are synthesized from cholesterol in the liver
through a series of enzyme cascades. Following the syn-
thesis of CA and CDCA, some of them are conjugated
with either taurine or glycine to form taurocholic acid
(TCA), taurochenodeoxycholic acid (TCDCA), glyco-
cholic acid (GCA) or glycochenodeoxycholic acid
(GCDCA) in the liver (Fig. 1) (Russell 2003). Simultan-
eously, primary BAs are secreted into bile canaliculus
from the liver. Bile containing BAs can be secreted dir-
ectly into duodenum or stored and concentrated in the
gallbladder. Acidic and fatty chyme causes the enteroen-
docrine I cells to secrete cholecystokinin into systemic
circulation to stimulate the gallbladder to contract and
secrete bile into the duodenum.
In the intestine, microbial enzymes from gut bacteria

metabolize BAs. Primary unconjugated BAs, CA and
CDCA are transformed by 7α-dehydroxylation into sec-
ondary unconjugated BAs, deoxycholic acid (DCA) and
lithocholic acid (LCA), respectively (Fig. 1). The primary
glycine or taurine conjugated CA (GCA or TCA) and
CDCA (GCDCA or TCDCA) can be deconjugated by
bile salt hydrolases to return to CA and CDCA, respect-
ively. Epimerization of hydroxyl groups of CDCA by

hydroxysteroid dehydrogenases of intestinal bacteria
leads to the formation of ursodeoxycholic acid (UDCA).
The secondary unconjugated BAs in the intestines are
subsequently conjugated with glycine or taurine to form
GDCA or TDCA, GLCA or TLCA, and GUDCA or
TUDCA (Chiang 2013). At the distal ileum, approxi-
mately 95% intestinal BAs are reabsorbed by apical
sodium-dependent BA transporter (ASBT, also known
as SLC10A2) into enterocytes and secreted into the
portal vein via basolateral BA transporters, including
organic solute transporter subunit α (OSTα)/OSTβ
complex. BAs are then taken up into hepatocytes by so-
dium/taurocholate co-transporting polypeptide (NTCP,
also known as SLC10A1) and organic anion-transporting
polypeptide 1 (Dawson et al. 2009; Trauner and Boyer
2003). There are alternative excretion routes for BAs to
enter systemic circulation, such as those via multidrug
resistance-associated protein 3 (MRP3) and MRP4 (Li
et al. 2017b). The remaining 5% BAs are lost in feces or
used by the intestinal microbiota (Ridlon et al. 2006).
Certain gut bacteria metabolize BAs and transform them
in the intestine into secondary unconjugated or conju-
gated forms with different biologic activities (Tian et al.
2020; Wahlstrom et al. 2016). These bacteria influence
gut microbiome composition which is also shaped by

Fig. 1 Bile acid (BA) biosynthesis and metabolism. Schematic representation of synthetic pathways of primary BAs in hepatocytes (tawny color)
and secondary BAs in the intestine (dark brown color). The formation of BAs occurs in the liver via 2 pathways: the classical (or neutral) and the
alternative (or acidic) pathways. BAs in the liver are then conjugated with glycine (G) or taurine (T). Primary BAs are metabolized by certain gut
bacteria by deconjugation, dehydroxylation, conjugation, and epimerization, generating secondary BAs. The majority of BAs in the gut (90-95%)
are reabsorbed in the ileum and recirculate to the liver through the portal vein. The remaining BAs are eliminated through the feces. CA, cholic
acid. DCA, deoxycholic acid. CDCA, chenodeoxycholic acid. LCA, lithocholic acid. UDCA, ursodeoxycholic acid
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diet and host factors. The impact of microbiome and
BAs interactions on enteric viral infections is largely
unexplored.
Biosynthesis of BAs is negatively regulated by FXR

through a feedback mechanism to limit BAs accumula-
tion in the liver (Goodwin et al. 2000; Lu et al. 2000).
CA and CDCA, as well as DCA and LCA but to a
smaller extent, are the endogenous ligands for nuclear
receptor FXR (Makishima et al. 1999; Parks et al. 1999;
Wang et al. 1999). Activation of ileal FXR, leading to
down-regulation of ASBT and up-regulation of intestinal
BA-binding proteins OSTα and OSTβ, promotes recyc-
ling of BAs to the liver (Chen et al. 2003; Landrier et al.
2006; Plass et al. 2002; Zollner et al. 2006). The circula-
tion process, by which BAs are secreted from the liver
into the intestine, reabsorbed in the ileum, and recycled
to the liver via the portal vein, is termed enterohepatic
circulation. In humans, a BA pool of about 3 g (90–95%
of total BAs) is recycled between the gut and the liver
approximately 8 times per day, with only 0.2–0.6 g of de
novo synthesized BAs being produced per day to main-
tain a stable pool of BAs (Chiang 2009).

The role of BAs in cell culture adaptation of
enteric caliciviruses and in viral replication
Caliciviruses are small, round, non-enveloped viruses
with a diameter of 27–35 nm. They possess a single-
stranded, positive sense RNA genome (Prasad et al.
1999). Noroviruses and sapoviruses are members of cali-
civiruses and cause gastroenteritis in humans and ani-
mals (Green 2007; Oka et al. 2015). It had been difficult
to study the pathogenesis and viral replication of human
noroviruses (HuNoVs) and human sapoviruses (HuSaVs)
due to the lack of a cell culture system until last decade.
The fist cell culture-adapted enteric calicivirus was por-
cine enteric calicivirus (PEC) Cowden strain, a porcine
genogroup III sapovirus. It was first isolated in primary
porcine kidney cells (Flynn and Saif 1988) and subse-
quently in continuous porcine kidney cell line (LLC-PK1
cells) in the presence of an intestinal content (IC) prep-
aration (Parwani et al. 1991). IC effects on the growth of
PEC in cell culture were initially associated with the in-
duction of a protein kinase A (PKA) signaling pathway
(Chang et al. 2002). Subsequent studies revealed that bile
and BAs functioned as active factors in IC and are essen-
tial for PEC growth in the continuous cell line LLC-PK1.
In LLC-PK1 cells, BAs induced an increase in cyclic ad-
enosine monophosphate (cAMP) concentration, which
was associated with down-regulation of interferon (IFN)-
mediated signal transducer and activator of transcription
1 (STAT1) activation, a key element in innate immunity
(Chang et al. 2004). Further, Shivanna et al. found that
GCDCA was critical for PEC escape from the endo-
somes into the cytoplasm by inducing acidification of

endosomes and subsequent activation of the endosomal/
lysosome-enzyme acid sphingomyelinase (ASM), and the
production of ceramide to initiate viral replication (Shi-
vanna et al. 2014, 2015). BA transporters, including
ABST and NTCP, are also involved in exerting effects of
BAs on PEC replication in cells. The pioneering discov-
ery of requirement and mechanisms of certain BAs in
the replication of PEC in vitro is very significant because
it prompted scientists to culture HuNoVs and HuSaVs
by using BAs.
HuNoVs are the leading cause of sporadic and epi-

demic gastroenteritis in all ages worldwide (Ahmed et al.
2014; Pires et al. 2015; Ramani et al. 2014). They are the
major etiological agent of foodborne and waterborne
gastroenteritis outbreaks. Recently, scientists found that
HuNoVs target the intestinal epithelial of duodenum,
jejunum and ileum (Green et al. 2020; Karandikar et al.
2016). More interestingly, Green et al. found that
HuNoV replicated specifically in the enteroendocrine
epithelial cells of biopsy samples collected from im-
munocompromised patients (Green et al. 2020). Also,
significant progress has been made in propagation of
HuNoVs in vitro. HuNoV replication in human B cells
was facilitated by histo-blood group antigen (HBGA)-ex-
pressing enteric bacteria (Jones et al. 2014). Although
cellular receptor for HuNoV entry is still unknown,
HGBAs are considered as binding factors necessary to
initiate infection. Later, scientists found that replication
of certain HuNoV strains in human intestinal stem cell-
derived enteroids (HIEs) and human induced pluripotent
stem cells (iPSCs)-derived intestinal organoids was
dependent on (or enhanced by) BAs (Ettayebi et al.
2016; Sato et al. 2019). Although HuNoV could infect
three-dimensional cultured Caco-2 cells (Straub et al.
2011) and a clone of Caco-2 cells (C2BBe1) (Straub et al.
2013), reproducibility remains problematic (Takanashi
et al. 2014). Interestingly, bile was involved in HuNoV
replication in the enteroids and intestinal organoids in a
strain-dependent manner and functioned at an early
stage of infection, with its effects on the cells, but not
the virus (Ettayebi et al. 2016; Sato et al. 2019). Recent
studies have confirmed no binding of BAs (GCA,
GCDCA, TCA or TCDCA) to the virus like particles
(VLPs) of some culturable HuNoVs, such as HuNoV
genogroup I genotype 1 (GI.1), GII.3, GII.4 and GII.17
(Kilic et al. 2019). Murakami et al. demonstrated that
GCDCA promoted GII.3 replication by enhancing endo-
somal uptake, endosomal acidification, activity of endo-
somal/lysosomal enzyme ASM, and ceramide levels on
the apical membrane through S1PR2 in HIEs (Murakami
et al. 2020). On the other hand, Kilic et al. found that
BAs rendered/enhanced the binding of certain HuNoV
genotypes (e.g., GII.1 and GII.10) with HGBA (Kilic
et al. 2019). Lindesmith et al. also reported that bovine
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bile, but not GCDCA or TCA, enhanced the binding of
VLPs of GII.2 Chapel Hill strain (CH) to pig gastric
mucin III, which contained several secretor HBGAs, in a
dose-dependent manner (Lindesmith et al. 2020). These
results suggested that BAs had complex effects on host
cells and/or HuNoV particles in a strain-dependent
manner and influenced HuNoV life cycles. More system-
atic analyses of multiple BAs and genotypes of HuNoVs
are warranted to better understanding effects of BAs on
HuNoV replication.
Murine norovirus (MuNoV) grows in mouse macro-

phage and dendritic cell lines. Its infection of mice has
been used as a model to study the replication and patho-
genesis of noroviruses due to the lack of an animal
model for HuNoVs with the exception of germfree piglet
model (Cheetham et al. 2006; Karst and Tibbetts 2016;
Karst et al. 2003; Wobus et al. 2006). CD300lf is a
proteinaceous cellular receptor for MuNoV binding and
entry into mouse cell lines, primary cells, and mice
(Orchard et al. 2016).
The capsid protein of NoVs is divided to shell (S) and

protruding (P) domains. P domains form dimers bind to
the host receptors to initiate virus infection. There are 2
binding sites for GCDCA and LCA at P domain dimer
interface of MuNoV. These BA binding sites are distinct
from those for CD300lf receptor. GCDCA enhances in-
trinsic affinity of P domain of viral capsid protein for
cellular receptor CD300lf and is necessary for cell at-
tachment (Nelson et al. 2018). Subsequent studies
showed that GCDCA and TCA caused the rotation and
contraction of MuNoV P domain onto the viral capsid
shell surface. This stabilized P domain appeared to allow
for a higher degree of receptor saturation with virus
(Sherman et al. 2019). In contradiction to the above re-
sults, CDCA and DCA may directly prime type III IFN
induction in proximal gut, resulting in the inhibition of
MuNoV replication in intestinal immune cells (Grau
et al. 2020). These studies provided a biophysical
characterization of MuNoV capsid-receptor and capsid-
BA interactions and had important implications for the
design of norovirus therapeutics.
Like HuNoVs, HuSaVs also cause acute gastroenteritis

with similar transmission route and symptoms to
HuNoV-associated illnesses (Oka et al. 2015). Recently,
Takagi et al. reported the first efficient growth of mul-
tiple HuSaVs (GI.1, GI.2 and GII.3) in one human duo-
denum cell line HuTu80 in culture medium
supplemented with BAs (GCA or GCDCA) (Takagi et al.
2020). This inexpensive and reproducible in vitro cell
culture system can be further optimized to provide a
fundamental scientific tool for HuSaV research and
future infection control strategy development. These
results suggest that BAs are essential for the successful
propagation of certain human noroviruses and

sapoviruses in cell culture. BAs may function via cells
and/or the viral particles. However, the molecular mech-
anisms need to be investigated further.

Roles of BAs in the replication of enteric rotavirus
Rotavirus is named for its classic “wheel-shaped” appear-
ance by electron microscopy. Its positive sense RNA
genome is double-stranded, consisting of 11 fragments.
Rotavirus is the leading cause of severe gastroenteritis in
children less than 5 years of age (Crawford et al. 2017)
and also a common cause of diarrhea in young animals
(Doro et al. 2015). Although effective live-attenuated
vaccines are available for human rotavirus infection
(Carvalho and Gill 2019), rotavirus still remains the most
important cause of gastroenteritis in infants and children
worldwide. Kim and Chang demonstrated that CDCA
and DCA significantly reduced rotavirus replication in
cell culture in a dose-dependent manner with activation
of FXR/small heterodimer partner signaling pathway.
Furthermore, a significant reduction in fecal rotavirus
shedding was also detected between 1 and 3 d post in-
oculation in CDCA-fed mice (Kim and Chang 2011).
This data may open a new avenue for the development
of antiviral and/or disinfection for rotaviruses.

Roles of BAs in the replication of enteric
coronaviruses
Coronaviruses (CoVs) are positive sense, single-stranded
RNA viruses that cause diseases in mammals and birds.
They can cause respiratory, enteric, hepatic and neuro-
logical diseases, and peritonitis with highly variable
severity (De Groot et al. 2012). Particularly notable are
the beta-CoVs that cause enteric, respiratory and neuro-
logic infections in cattle and swine and fatal respiratory
disease in humans. Most famous of them are bovine
CoV, porcine hemagglutinating encephalomyelitis virus
(PHEV), severe acute respiratory syndrome (SARS),
Middle East respiratory syndrome (MERS) and corona-
virus disease 2019 (COVID-19) (Mora-Diaz et al. 2019;
Saif and Jung 2020). Porcine epidemic diarrhea virus
(PEDV) and porcine deltacoronavirus (PDCoV) are
major causative agents of lethal watery diarrhea in neo-
natal piglets in the past decade (Jung et al. 2016; Koon-
paew et al. 2019; Ma et al. 2015; Stevenson et al. 2013;
Sun et al. 2012; Wang et al. 2014). Kim et al. isolated
and passaged a PEDV strain in Vero cells in the pres-
ence of GCDCA, trypsin or elastase to obtain 8aa, KD or
AA PEDV strains. PEDV 8aa strain grew to higher titer
(> 8 log10 TCID50/mL) than KD and AA (< 7 log10
TCID50/mL) strains in vitro after the 20th passage level.
Interestingly, replication of 8aa was inhibited by trypsin.
It replicated poorly and was fully attenuated in nursing
piglets (Kim et al. 2017). Su et al. reported that bile,
CDCA, GCDCA, UDCA and DCA increased the
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infectivity of PEDV strain icPC22A in Vero and porcine
small intestinal epithelial cell line (IPEC-DQ, a subclone
of IPEC-J2), but had no or negative effects on PEDV
variant icPC22A-S1Δ197, which lacks 197-aa in spike
protein N-terminal domain (Su et al. 2019). Recently, we
found that CDCA and LCA had antiviral activity against
PDCoV replication in LLC-PK1 and IPEC-J2 cells. How-
ever, BAs GCDCA, CA, TCA, DCA, GDCA and TDCA
had no effects on PDCoV replication. Further, we found
that CDCA and LCA inhibited PDCoV replication at
post-entry stages by inducing the production of IFN-λ3
and IFN-stimulated gene 15 (ISG15) via GPCRs in
IPEC-J2 cells (paper submitted to Veterinary Microbiol-
ogy). These results suggested that some BAs could affect
enteric coronavirus replication. The interaction among
BAs, microbiota and intestinal enzymes (e.g. proteases),
BA effects and molecular mechanisms on coronavirus
replication in vivo remain unclear. Such findings may
also have implications for the human epidemic/pan-
demic CoVs (SARS-CoV-1, MERS-CoV and SARS-CoV-
2) because all have been reported to infect the gastro-
intestinal tract (Leung et al. 2003; Wong et al. 2020;
Zhou et al. 2017).

Perspectives and future research
In addition to the modulation of enteric virus replica-
tion, BAs can limit in vitro replication of herpes simplex
virus (Herold et al. 1999), human immunodeficiency
virus (Lloyd et al. 1988), influenza A virus (Luo et al.
2018), mouse cytomegalovirus (Schupp et al. 2016), sim-
ian virus 40 (Kim et al. 1999), chikungunya virus (Wink-
ler et al. 2020), and hepatitis D virus (Veloso Alves
Pereira et al. 2015). On the contrary, it promotes in vitro
replication of hepatitis B virus (Kim et al. 2010; Reese
et al. 2013) and hepatitis C virus (Chang and George
2007; Chhatwal et al. 2012; Patton et al. 2011; Scholtes
et al. 2008). These studies demonstrated that local BAs
in liver, intestines and systemic BAs in blood, and differ-
ent types of BAs play a complex role in the life cycle of
different viruses.
BAs activate multiple signaling pathways and tran-

scription factors to promote or inhibit virus replication
in vivo and in vitro. It would be interesting to determine
if other viruses that preferentially replicate in liver or in-
testines, such as hepatitis A virus, hepatitis E virus and
other enteric viruses, are also affected by BAs and have
evolved mechanisms to survive or even benefit from BA
signaling. To date, studies have reported that BAs acti-
vated several key innate signaling pathways to potentiate
antiviral immunity (Fiorucci et al. 2018; Grau et al. 2020;
Hu et al. 2019). Therefore, the potential of using BAs to
enhance innate antiviral responses and engage host im-
mune system to clear infection may be a useful strategy
for treatment of some hepatotropic and enteric virus

infections. However, Podevin et al. demonstrated that
CDCA inhibited antiviral activities of IFN-α in hepatic
cells (Podevin et al. 1999). Grau et al. reported that
MuNoV infection in proximal gut was inhibited by
CDCA and DCA through type III interferon induction,
while high expression levels of FXR simultaneously en-
hanced MuNoV infection in distal gut (Grau et al. 2020).
These findings partially explain the complex role of
different BAs in regulating aspects of enteric virus infec-
tions and should stimulate interest in further investiga-
tion of the role of BAs in virus replication, induction of
innate immunity and microbiota-virus-host interactions.

Conclusions
In addition to facilitating the absorption of dietary fats,
BAs act as signaling molecules through different cell re-
ceptors and signaling pathways to regulate lipid, glucose
and energy metabolism. Research in the past two de-
cades has contributed substantially to our understanding
of the role of BAs in virus infections. In this review, we
have discussed BA biosynthesis, transport and metabol-
ism and the mechanistic links between BAs and en-
teric virus infections, with a focus on enteric
caliciviruses, rotaviruses, and coronaviruses. We also
summarized the roles of certain BAs on replication of
enteric viruses in Table 1. BAs, BA-activated receptors
and signaling pathways could be therapeutic targets for
the development of antiviral drugs to treat enteric virus
infections.
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