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SHORT COMMUNICATION

The truncated form of flagellin (tFlic) 
provides the 2dCap subunit vaccine with better 
immunogenicity and protective effects in mice
Ying Lu†, Zehui Liu†, Yingxiang Li, Zhuofan Deng, Weihuan Fang and Fang He* 

Abstract 

Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated diseases, and it causes 
substantial economic losses in the swine industry each year. It is crucial to develop an effective vaccine against the 
circulating strain PCV2d, which is prone to substantial degrees of mutation. In this study, a truncated form of flagel-
lin (tFlic: 85-111 aa) was inserted into the C-terminal sequence of 2dCap, and Western blotting results showed that 
recombinant Cap-tFlic VLPs were successfully expressed. Transmission electron microscopy (TEM) and dynamic light 
scattering (DLS) data indicated that purified recombinant Cap-tFlic fusion proteins existed in the form of polymers 
and that tFlic could not affect the formation and internalization of VLPs. Integrated Cap-tFlic VLPs induced the expres-
sion of antigen presentation-related factors (MHC-II and CD86) by bone marrow-derived dendritic cells (BM-DCs), 
and the expression of TLR5-related factors (TNF-α) was dramatically elevated. Mice intramuscularly immunized with 
Cap-tFlic VLPs exhibited significantly higher levels of Cap-specific antibodies and neutralizing antibodies than mice 
immunized with wild-type Cap VLPs. The data obtained in the current study indicate that Cap-tFlic may be a candi-
date for a subunit vaccine against PCV2 in the future. 
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Main text
Flagellin, the main protein component of bacterial fla-
gella, possesses powerful and modifiable adjuvant activ-
ity due to its unique structure. As a pathogen-associated 
molecular pattern (PAMP) that activates innate and 
adaptive immune responses, flagellin has been widely 
used as a potent adjuvant in vaccine design (Khim et al., 
2021; Oh et al., 2014; Wangkahart et al., 2018; Gries et al., 
2019). Flagellin is the only protein component recognized 

by the TLR5 receptor that activates NF-κB and stimulates 
tumor necrosis factor-α (TNF-α) production through 
a MyD88-dependent pathway (Miao et  al., 2007; Ben-
edikz et al., 2019). The innate immune response to bac-
terial flagellin is mediated by TLR5. Following invasion 
by a foreign microbe, DCs undergo a maturation process 
characterized by increased surface expression of MHC-II 
and costimulatory molecules, and then, effective immune 
responses in naive T cells are initiated; these phenomena 
have been confirmed with human dendritic cells (DCs) 
(Eaves-Pyles et al., 2001; Gewirtz et al., 2004; Means et al., 
2003). However, it was shown that murine DCs do not 
respond to flagellin, and these results may have occurred 
because these cells do not express TLR5 (Macpher-
son and Harris, 2004; Uematsu and Akira, 2009). Previ-
ous research conducted recent years used flagellin in 
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the development of tumor vaccines, and one such study 
demonstrated enhanced tumor-specific CD8 +  T cell-
mediated immune responses after TLR5 stimulation in a 
therapeutic cancer vaccine model (Nguyen et  al., 2013). 
It has been shown that flagellin exerts strong adjuvant 
effects in many vaccine candidates against Yersinia pes-
tis (Honko et  al., 2006; Mizel et  al., 2009), Plasmodium 
falciparum (Bargieri et al., 2008), Clostridium tetani (Lee 
et al., 2006), influenza (Skountzou et al., 2010) and West 
Nile virus (McDonald et al., 2007). The truncated form of 
flagellin (tFlic, aa 85-111) and eight other flagellin-related 
peptides were proven to function as adjuvants and 
enhance antigen-specific immunity (Faham and Altin, 
2010).

Porcine circovirus type 2 (PCV2) was found to cause 
porcine circovirus-associated diseases (PCVADs). The 
capsid protein (Cap), encoded by ORF2, is the most 
important protective antigen of PCV2 and has been used 
as a target for vaccine development (Chae, 2012). Cap 
can self-assemble to form virus-like particles (VLPs) 
of 60 subunits (Khayat et  al., 2011). These VLPs have a 
structure similarity to that of virions that elicits strong 
B cell-mediated responses and cytotoxic T lymphocyte-
mediated responses, but they lack nucleic acids, which 
reduce the risk of viral spread; thus, VLPs are a hot topic 
in vaccine development research (Aguilera et  al., 2017; 
Chae, 2016; Fachinger et al., 2008; Rosano and Ceccarelli, 
2014; Yin et  al., 2010). Epidemiological findings from 
an increasing number of studies revealed that PCV2d 
(a PCV2b mutant with reportedly higher virulence) has 
emerged and spread rapidly in Chinese swine herds (Xiao 
et al., 2015). Commercial vaccines, including whole-virus 
inactivated vaccines and recombinant vaccines based on 
Cap, are in urgent need of improvement.

The structure of VLPs is similar to that of natural 
viruses; these particles are small and can display repeti-
tive and ordered antigens. It has been demonstrated that 
VLPs can bind to DCs and be efficiently internalized, pro-
moting stronger MHC-I cross-presentation and T and B 
cell-mediated responses than soluble antigens (Wu et al., 
2010). The self-adjuvant nature of VLPs is considered 
a prominent advantage, and VLPs are used in vaccine 
design (Eaves-Pyles et  al., 2001). Previous studies have 
shown that recombinant Cap from PCV2 can be assem-
bled into VLPs in E. coli, baculovirus or yeast systems 
(Bucarey et al., 2009; Marcekova et al., 2009; Nainys et al., 
2014). PCV2 Cap was used as a foreign epitope carrier 
because its C-terminus allows the insertion of small anti-
gen fragments, and the display of small molecules on the 
surface does not interfere with particle assembly (Li et al., 
2018c; Ding et al., 2019; Li et al., 2018a, b). VLPs formed 
by PCV2 Cap have also been successfully used as foreign 
epitope vectors to carry other antigens (Zhang et  al., 

2014). When the nuclear localization signal (NLS) of Cap 
was replaced with T cell epitopes and B cell epitopes of 
classical swine fever virus (CSFV), the VLPs could suc-
cessfully self-assemble and stimulate the production of 
antibodies against PCV2 and CSFV (Zhang et al., 2014). 
Furthermore, a recombinant form of PCV2b Cap that 
includes the VP1 epitope of foot-and-mouth disease virus 
(FMDV) can form VLPs and elicit strong humoral immu-
nity against PCV2b and FMDV in mice and guinea pigs 
(Li et al., 2018c). M2e (a conserved protective antigen of 
the influenza A virus) was expressed in Escherichia coli 
(E. coli) and then inserted into the PCV2 Cap sequence, 
the recombinant Cap self-assembled into chimeric Cap-
3M2e VLPs. This bivalent nanovaccine was able to elicit 
high levels of M2e-specific antibodies and PCV2-specific 
neutralizing antibodies (Ding et al., 2019). To control the 
mixed infection of PCV2 and porcine respiratory and 
reproductive syndrome virus (PRRSV), PCV2-derived 
VLPs were engineered by replacing the decoy epitope 
(169-180 aa) of Cap with protective epitopes of PRRSV; 
these VLPs stimulated the production of considerable 
amounts of neutralizing antibodies against both PCV2 
and PRRSV (Jung et  al., 2020). These findings empha-
sized that genetic recombination of PCV2-derived VLPs 
is a promising strategy.

In the present study, we explored whether the potency 
of Cap VLP-based vaccines in a mouse model would be 
further elevated via the addition of a truncated form of 
flagellin (tFlic) as an adjuvant.

Successful expression of Cap‑tFlic and assembly of VLPs
In a previous study, a truncated form of flagellin (tflic, 
amino acids 85–111 of mature flagellin), which plays an 
auxiliary role in eliciting immune responses mainly by 
inducing DC maturation (as shown by MHC-II and CD86 
expression) and cytokine production (Liu et  al., 2020; 
Sanders et  al., 2009), was used for the targeted delivery 
of liposomal antigen to APCs in  vitro and in  vivo; this 
approach significantly enhanced antigen-specific immu-
nity. To promote the soluble expression of the recombi-
nant protein, amino acids 1-16 of the N-terminus of Cap 
were deleted. Then, the amino acid sequence of tFlic was 
inserted into the C-terminus of 2dCap to construct the 
expression plasmid (Fig.  1A), and Cap-tFlic was trans-
formed into E. coli BL21 (DE3) and purified by nickel-
nitrilotriacetic acid (Ni–NTA). Western blotting results 
indicated that the size of the fusion protein was con-
sistent with the expected molecular weight of ~ 28  kDa; 
moreover, the Cap-tFlic proteins showed significant 
reactivity with the PCV2 Cap monoclonal antibody 8C3 
(Fig. 1A). The purified proteins were processed and ana-
lyzed by transmission electron microscopy (TEM). The 
results showed that Cap-tFlic successfully assembled 
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into regular VLPs with a diameter of ~ 20  nm (Fig.  1B). 
The DLS results indicated that the major particle size of 
Cap-tFlic VLPs was 22 nm (Fig. 1C). The observed size of 
Cap-tFlic VLPs obtained via both methods was consist-
ent, indicating that the Cap-tFlic VLPs exhibit consider-
able integrity and ordered distribution.

Significantly elevated antigen‑presenting molecule 
expression via Cap‑tFlic VLPs
BM-DCs were prepared from mice and used to deter-
mine whether the incorporation of antigen with the small 
molecule adjuvant tFlic influences the uptake of Cap 
VLPs by APCs. BM-DCs were incubated with 100  μg/
mL Cap VLPs and Cap-tFlic VLPs for 12 h. As shown in 
Fig. 2A, the same green fluorescence signal was observed 
in the BM-DCs in the Cap VLPs and Cap-tFlic VLPs 
groups. These results indicate that the ability of the cells 
to internalize Cap-tFlic VLPs was not enhanced, and 
conversely, tFlic does not affect the internalization of Cap 
antigens. DC activation is considered a critical step in 
initiating adaptive immunity (Banchereau and Steinman, 
1998); in fact, upon administration, flagellin induces a 
strong upregulation of costimulatory molecule expres-
sion by DCs (Didierlaurent et  al., 2004), and DC acti-
vation is usually evaluated by administering potential 
stimuli and measuring the expression of MHC-II, CD80, 
CD86 or CD40 (Sanders et al., 2009). To further investi-
gate the initiation of cellular immune responses, relative 

expression of MHC-II, TNF-α and CD86 was determined 
by quantitative real-time PCR (qPCR) (Fig.  2B). The 
results showed that expression levels of MHC-II, CD86 
and especially TNF-α markedly increased upon incuba-
tion with Cap-tFlic. The level of TNF-α in the Cap-tFlic 
VLP group was 13.39-fold higher than that in the native 
Cap VLP group. The levels of MHC-II and CD86 in the 
Cap-tFlic VLP group were 3.14- and 5.18-fold higher 
than those in the native Cap VLP group, respectively. 
At present, most of studies related to flagellin that used 
mouse models mostly used intestinal or lung-derived 
monocytes. Interestingly, when mouse-derived DCs were 
stimulated by Cap VLPs carrying flagellin (flagellin was 
the only variable) in this study, the expression of TLR5-
related cytokines, such as TNF-α, was increased; how-
ever, the mechanism underlying tFlic-induced changes in 
the expression of relevant factors requires further study. 
These results suggest that Cap-tFlic VLPs can induce 
cytokine production and DC maturation in vitro.

Stimulation of potent humoral immune responses 
by Cap‑tFlic VLPs
After immunization of a mouse model, it was observed 
that the efficient internalization of Cap-tFlic indeed cor-
related with a more effective humoral immune response, 
especially with a significant increase in IgG1 and IgG2a 
production. IgG2a production suggests a predomi-
nantly T helper cell type 1 (Th1) response, which plays 

Fig. 1 Construction and characterization of Cap-tFlic VLPs. Amino acid sequences corresponding to tFlic were inserted into the C-terminal 
sequence of Cap, and recombinant proteins were specifically identified by a mouse anti-Cap mAb (8C3) using Western blotting (A). Morphological 
characterization of Cap VLPs by TEM (20,000 ×) (B). Determination of Cap-tFlic VLP particle diameter by DLS (C). NC, negative control, protein 
60 T, ~ 60 kDa 
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an indispensable role in protection against viral infec-
tion (Hannestad and Scott, 2017). Therefore, the levels 
of anti-Cap antibodies were tested by enzyme-linked 
immunosorbent assay (ELISA). The results are shown 
in Fig.  3. As expected, insignificant antibody responses 
were observed in the negative control group that was 
treated with PBS, and Cap-specific antibody levels were 
significantly elevated in the immunized group. At 35 
d post immunization (dpi), the level of IgG detected in 
the antigen-immunized Cap VLP group was higher than 
that in the positive control group, and the Cap-tFlic VLP 
group has  significantly higher IgG levels than the Cap 
VLP group (p < 0.001), corresponding to the OD450 value 
in the Cap-tFlic VLP group being 1.25-fold higher than 
that in the Cap VLP group. The distribution of the IgG 
subclasses IgG1 and IgG2a was then assessed. The IgG1 
levels of the Cap-tFlic VLP group were significantly 
higher than those of the Cap VLP group (P < 0.01), corre-
sponding to the OD450 value in the Cap-tFlic VLP group 
being 1.25- and 1.22-fold higher than that in the Cap VLP 
group. Levels of virus-neutralizing antibodies (NAbs) 
against PCV2 correlate well with in vivo protection; they 
can bind to antigens on the surface of pathogenic micro-
organisms, preventing adherence to target cell recep-
tors and cell invasion. Therefore, the titer of NAbs in 
serum samples was measured (Fig.  3). As expected, no 
PCV2-specific NAbs were detected in the negative con-
trol group, and significant increases in the NAb levels 
were detected in all the other immunized groups. In the 
Cap-tFlic VLP groups, the average NAb titer was 1:20.53, 
which was significantly (P < 0.01) higher than that in the 
native Cap VLP groups (1:10.13). These results suggest 
that Cap-tFlic VLPs are more efficient in eliciting a Th1 
response and humoral immune responses than conven-
tional Cap VLPs in vivo, verifying that the addition of the 
truncated form of flagellin (tFlic) in the PCV2 subunit 
vaccine represents an alternative strategy for improving 
the immunogenicity of Cap.

Methods
Cells, virus and experimental animals
The GenBank accession number of the Cap gene is 
MT376345.1, and the amino acid sequence of the trun-
cated form of flagellin (tFlic: 85-111 aa) is ATC AAC 
AAC AAC CTG CAG CGT GTT CGT GAA CTG GCT GTT 
CAG TCT GCT AAC TCT ACC AAC TCT CAG TCT GAC 

CTG GAC TCT. Porcine kidney epithelial cells (PK-15, 
ATCC -33,BNCC, China) were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Thermo,  USA) sup-
plemented with 10% fetal bovine serum (FBS, Yeasen, 
China), 100  IU/mL penicillin (Sangon, China) and 
100 mg/L streptomycin (Sangon, China) at 37 °C in a 5% 
 CO2 atmosphere. The PCV2d JH strain (MG_245867.1) 
was grown in PK-15 cells and utilized for indirect immu-
nofluorescence assay (IFA) and ELISA. Totally 20 eight-
week-old female SPF BALB/c mice and C576BL male 
mice were arbitrarily chosen and purchased from the 
Experimental Animal Center of Zhengjiang Univer-
sity. The experimental mice were randomly divided into 
four groups, given clean water and food, and allowed to 
acclimate to the housing environmental conditions. The 
animal experimental procedures were supervised and 
approved by the Laboratory Animal Management Com-
mittee, Zhejiang University.

Cloning and expression of Cap‑tFlic VLPs
As shown in Fig.  1, the small molecule adjuvant trun-
cated flagellin (tFlic) was fused to the N-terminus of Cap 
with a 4 × GGS flexible linker to generate the recombi-
nant plasmid pET28a-2dcap-d16-tFlic, which was then 
transformed into E. coli Rosetta (DE3) (Yeasen, China) 
competent cells. The sequences of the primers used for 
PCR are shown in Table 1. Bacteria were cultured, treated 
with 0.06 mM isopropyl thiogalactoside (IPTG, Sangon, 
China), collected, suspended and lysed by ultrasonica-
tion. Then, supernatants containing the target proteins 
were collected and mixed with agarose resin (Yeasen, 
China), and target proteins were eluted with PBS supple-
mented with 500 mM imidazole (Liu et al., 2021). For the 
subsequent experiments, the purified proteins were ana-
lyzed by SDS–PAGE and Western blotting.

Characterization of Cap‑tFlic particles
Purified Cap-tFlic fusion proteins were filtered and dia-
lyzed at 16  °C overnight as described previously (Liu 
et al., 2021). VLPs were visualized by transmission elec-
tron microscopy (TEM, JEOL, JEM-1010) using 2% phos-
photungstic acid (PTA, Aladdin, China) (pH 6.8) negative 
staining. The size distribution and diameter of the VLPs 
were then measured by dynamic light scattering (DLS, 
PSS, Nicomp, USA.)

Fig. 2 Assessment of antigen uptake and immunostimulatory effects in BM-DCs. BM-DCs were incubated with Cap-tFlic VLPs. The primary antibody 
was mouse 8C3 mAb, and the secondary antibody was FITC-coupled goat anti-mouse IgG. Signals of cell nuclei (blue) and Cap (green) were 
detected by CLSM (A). BM-DCs were exposed to 100 μg/mL antigens for 12 h, and TNF-α, MHC-II and CD86 expression was then measured by qPCR 
(B). NC, unprocessed BM-DCs. **P < 0.01, ***P < 0.001, ****P < 0.0001 

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Measurement of Cap-specific antibody levels and PCV2-specific Nab levels in sera. Levels of specific antibodies, including IgG (A), IgG1 (B) 
and IgG2a (C), and neutralizing antibodies against the PCV2 JH strain were measured by ELISA at 35 dpi (day post immunization). NAb titers were 
calculated and are expressed as the log 2 of the reciprocal of the highest serum dilution that was able to completely block PCV2 infection in PK-15 
cells (D). **, P < 0.01, ***, P < 0.001

Table 1 The primers used for PCR 

Primer Sequence (5′‑3′)

tFlic-F TCA GTC TGA CCT GGA CTC TTG AGA TCC GGC TGC TAA CAA AGC CCG 

tFlic-R AAC ACG CTG CAG GTT GTT GTT GAT ACC ACC CTT AGG GTT AAG TGG GGG GTC 

pET28a-2dCap-d16-tFlic-F TGA TGA AAG CTT GGC ACT GGC CGT CGT TTT ACA ACG TCG 

pET28a-2dCap-d16-tFlic-R CAC TTT GTG ATT CAT ATG CTA TGG TCC TTG TTG GTG AAG 

β-actin-F GGA GGG GGT TGA GGT GTT 

β-actin-R GTG TGC ACT TTT ATT GGT CTCAA 

MHC-II-F CTG TCT GGA TGC TTC CTG AGTTT 

MHC-II-R TCA GCT ATG TTT TGC AGT CCACC 

TNF-α-F GCC TCT TCT CAT TCC TGC TT

TNF-α-R TGG GAA CTT CTC ATC CCT TTG 

CD86-F GCC GTG CCC ATT TAC AAA GGC TCA A

CD86-R TGT TAC ATT CTG AGC CAG TTT TAT T
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Culture of murine bone marrow‑derived dendritic cells 
(BM‑DCs)
BM-DCs were isolated and cultured as described previ-
ously (Liu et  al., 2021). Briefly, C576BL male mice were 
euthanized and dissected, and bone marrow-derived 
dendritic cells were resuspended and seeded in 6-well cell 
plates at a density of  106 cells/well. Then, the cells were 
cultured for 7 d in complete RPMI-1640 (Thermo,USA) 
medium supplemented with 10  ng/mL granulocyte–
macrophage colony-stimulating factor (GM-CSF, San-
gon, China) and 10  ng/mL interleukin-4 (IL-4, Sangon, 
China).

Cellular uptake
Internalization of Cap VLPs by BM-DCs was meas-
ured as described previously (Liu et  al., 2021). In brief, 
100 μg/mL Cap VLPs and Cap-tFlic VLPs were added to 
cell cultures and incubated for 12 h. The cells were fixed 
with cold acetone, blocked with FBS, incubated with an 
anti-Cap monoclonal antibody (8C3), which was previ-
ously identified by this laboratory, for 1 h, and incubated 
with a fluorescent secondary antibody. The cells were 
stained with 4,6-diamino-2-phenyl indole (DAPI, Abcam, 
China) for 10  min, and then, the immunofluorescence 
signals of Cap internalization were measured by confo-
cal laser scanning microscopy (CLSM, Japan, Olympus, 
IX81-FV1000).

Analysis of cytokine mRNA expression in BM‑DCs
The effect of Cap VLPs on BM-DC antigen presentation 
was investigated as described previously (Liu et al., 2021). 
After exposure to 100  μg/mL Cap VLPs or Cap-tFlic 
VLPs for 12 h, total RNA was isolated from BM-DCs with 
an Easy RNA Kit (Easydo, China), and mRNA expression 
was analyzed by quantitative real-time PCR (qPCR). The 
primers used for qPCR are shown in Table 1.

Immunization
Eight-week-old female BALB/c mice (Zhejiang University 
Animal Experiment Center) were randomly divided into 
four groups with five animals per group, and the mice 
were subcutaneously inoculated with 4  μg of Cap VLPs 
or Cap-tFlic VLPs. PBS and commercial subunit vaccine 
(Pulike, China) were used as negative and positive con-
trols, respectively. Booster immunization was carried 
out with the same dose at 14 dpi, and serum samples 
were collected to measure the levels of PCV2-specific 
antibodies.

Serological assays
Mouse serum samples were collected at 35 dpi and were 
subjected to indirect ELISA to measure Cap-specific 

antibody levels as described previously (Liu et al., 2021). 
Briefly, 0.5  μM/mL 2dCap was precoated overnight at 
4  °C, blocked, incubated with mouse serum samples 
(diluted in PBST, 1:500) for 1 h at 37  °C, and incubated 
with HRP-conjugated goat anti-mouse IgG/IgG1/IgG2a 
(BBI, Beijing) diluted in PBST by 1:5000, 1:2000 and 
1:2000. Then, tetramethylbenzidine (TMB, Invitrogen, 
USA) was added, and the absorbance at 450 nm was read 
by a microplate reader (Biotek, Epoch, USA).

To determine the titers of neutralizing antibodies 
(NAbs) against PCV2, a virus neutralization test (VNT) 
was performed as described previously (Lu et al., 2022). 
In brief, PK-15 cells were cultured in DMEM a conflu-
ence of 70%, and twofold serially diluted heat-inactivated 
serum samples were mixed with the same volume of PCV 
JH (200  TCID50) and incubated for 1 h at 37 °C. The cells 
were incubated with the mixture for 1 h and then incu-
bated under normal conditions for 72  h. Then, IFA was 
performed, and the cells were observed under a fluores-
cence microscope.

Statistical analysis
Student’s t test was used to analyze the significance of the 
differences between two groups. P values < 0.05 were con-
sidered statistically significant.
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