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Abstract 

Single B-cell antibody generation technology is an advanced method that offers several advantages, including rapid 
production, high efficiency, and high yield. The antibodies generated via this technique retain their natural confor-
mation and are well suited for applications in pathogen diagnosis, disease treatment, and investigations of virus 
cross-species transmission mechanisms. Our study aimed to establish a platform for generating single B-cell antibod-
ies specifically targeting the foot-and-mouth disease virus (FMDV) 146S antigen in mice. Female BALB/c mice were 
immunized with inactivated O-type FMDV 146S antigen, and spleen cells were collected for further analysis. Flow 
cytometric sorting was performed using a biotin-labeled O-type FMDV 146S antigen as a decoy to identify and select 
CD19 + /CD21/35 + /CD43-/IgM-/Biotin + antigen-specific individual B cells. The gene sequences encoding the vari-
able regions of the heavy and light chains of the murine IgG antibodies were obtained via single-cell nested PCR 
amplification. Separate constructs were created for the heavy and light chain plasmids to ensure the proper expres-
sion of intact IgG antibodies. These plasmids were cotransfected into human embryonic kidney 293T (HEK293T) cells, 
leading to the successful production and purification of 15 specific monoclonal antibodies (mAbs), 10 which exhib-
ited activity in ELISA tests, and six antibodies that displayed activity in IFA tests. These findings highlight the successful 
development of a method for generating mouse-derived single B-cell antibodies that target FMDV. This achievement 
provides a solid foundation for diagnostic techniques and the analysis of antigenic structural variations.
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Main text
Foot-and-mouth disease (FMD) is an acute and highly 
contagious viral disease caused by foot-and-mouth dis-
ease virus (FMDV). It affects a wide range of animals, 
including more than 70 cloven-hoofed animals, such as 
cattle, sheep, pigs and various domestic and wild animals 
(Jamal and Belsham 2013; Lu et  al. 2022). FMD has a 
great impact, as it exhibits a high level of infectivity, lead-
ing to the mortality of young animals and a consequential 
decline in the productivity of adult animals. This disease 
has a great economic impact on a global scale, posing 
a major challenge to the development of the livestock 
industry.

FMDV is a nonenveloped virus that exhibits icosahe-
dral symmetry and is classified within the Picornaviridae 

Handling Editor: Fang He.

*Correspondence:
Wentao Li
wentao@mail.hzau.edu.cn
Yuanyuan Zhu
zhuyuanyzz@163.com
1 National Key Laboratory of Agricultural Microbiology, Hubei Hongshan 
Laboratory, College of Veterinary Medicine, Huazhong Agricultural 
University, Wuhan 430070, China
2 China Institute of Veterinary Drug Control, National/WOAH Reference 
Laboratory for Classical Swine Fever, Beijing 100081, China
3 Department of Pathogenic Biology, School of Biomedical Sciences, 
Shandong University, Jinan 250012, China
4 Key Laboratory of Development of Veterinary Diagnostic Products, 
Ministry of Agriculture and Rural Affairs, Wuhan 430070, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44149-024-00133-y&domain=pdf
http://orcid.org/0000-0002-7114-762X


Page 2 of 7Yang et al. Animal Diseases            (2024) 4:28 

family (Alexandersen and Mowat 2005). Its genome 
consists of a single-stranded RNA molecule containing 
approximately 8,500 nucleotides (Avendaño et al. 2020). 
The three-dimensional structure of FMDV isolates and 
antigenic variants has been elucidated (Han et al. 2015). 
The viral particle (VP) has a diameter of approximately 
30 nm and comprises 60 copies in total. It is composed of 
four distinct capsid proteins, namely, VP1, VP2, VP3 and 
VP4, each with 60 copies. VP1, VP2 and VP3 are located 
on the surface of virions, whereas VP4 is a capsid pro-
tein that interacts with viral RNA (Domingo et al. 2002). 
FMDV consists of three types of viral particles: 146S, 
75S and 12S (Harmsen et  al. 2022). Research findings 
have indicated that the 146S viral particle has the high-
est immunogenicity, offering the most effective immune 
protection (Doel and Chong 1982; Harmsen et al. 2011; 
Rao et al. 1994).

Monoclonal antibody (mAb) production has led to 
the development of various methods. In 1975, Köhler 
and Milstein pioneered hybridoma technology, a well-
established but time-consuming and relatively inefficient 
method that yields murine-origin antibodies (KÖhler 
and Milstein 1975). In 1996, a groundbreaking approach 
for antibody production was introduced (Babcook et  al. 
1996). Compared with traditional hybridoma technology, 

this novel method offers several significant advantages. 
It is characterized by its simplicity, efficiency, and time-
saving, allowing for the generation of multiple mAbs 
simultaneously within a single process. This technique 
combines lineage analysis of immunoglobulin (Ig) genes 
with Ig reactivity analysis at the single-cell level, provid-
ing a comprehensive understanding of antibody produc-
tion. By harnessing the power of fluorescence-activated 
cell sorting (FACS) cell sorting and sequencing technolo-
gies, it becomes possible to obtain the genes responsi-
ble for antibody expression from only a small number of 
cells. These genes can subsequently be expressed in vitro, 
facilitating the rapid production of multiple mAbs with 
precise antigen specificity.

In this study, we immunized mice with FMDV as a 
basis and successfully established a platform for gen-
erating mAbs from single B cells (Fig.  1). This platform 
can serve as a valuable reference for establishing similar 
platforms aimed at producing single B-cell-derived mAbs 
that target other pathogens.

FMDV inactivated antigen (FMDV O/GX/09–7) was 
purchased from JINYU Baoling BIO-PHARMACEU-
TICAL Co., Ltd. The antigen underwent inactivation 
through binary ethyleneimine (BEI) treatment and subse-
quent concentration. To assess FMDV 146S quality, the 

Fig. 1  Brief description of the platform for generating mAbs from single B cells in mice. B cells were enriched from immunized mice, and specific 
B cells were screened. The mAb sequences were amplified. Recombinant antibody expression plasmids were constructed using these sequences, 
and mAbs were produced (created in BioRender.com)
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FMDV 146S standard and FMDV 146S were analyzed 
through a high-performance liquid chromatography 
(HPLC) system (Domingo et al. 2002), revealing charac-
teristic chromatographic peaks.

To verify that FMDV 146S is biotinylated (Li et al. 2021), 
the biotin-labeled FMDV 146S and unlabeled FMDV 
146S were compared via Western blotting. Two additional 
bands in the 10–30 kDa range were observed for the bio-
tin-labeled FMDV 146S compared with the nonlabeled 
FMDV 146S (Fig.  2). These findings suggest that FMDV 
146S was successfully biotinylated (Li et al. 2020).

To obtain FMDV 146S-specific B cells, mononuclear 
cell populations were selected from all peripheral blood 
mononuclear cells (PBMCs) on the basis of their size and 
granularity. B-cell populations were specifically identified 

by CD19 and CD21/35 staining, whereas T-cell popula-
tions were excluded through the use of CD43 staining for 
negative selection. Subsequently, CD19 +/CD21+/35 + /
CD43-/IgM-/Biotin (FMDV) + cells were sorted via nega-
tive selection with the IgM marker and positive selection 
with the biotin marker. A total of approximately 1 × 108 
PBMCs were sorted, and 131 FMDV 146S-specific B cells 
were acquired.

To obtain antibody-expressing sequences, individ-
ual B-cell samples were subjected to single-cell reverse 
transcription, followed by PCR amplification of variable 
heavy chain (VH) and variable light chain (VL) regions 
(Fig.  3). The resulting variable region sequences were 
then subjected to sequencing and analysis, yielding a 
total of 83 sequences for the VH gene and 39 sequences 
for the VL gene.

Among these, we successfully identified 20 pairs of 
matching heavy‒light chain sequences, indicating the 
presence of B cells expressing antibodies with corre-
sponding variable regions in both chains. The outcomes 
of the international ImMunoGeneTics information sys-
tem (IMGT) analysis of these sequences are presented 
(Table  1), providing insights into the immunoglobulin 
heavy variable (IGHV) and immunoglobulin kappa vari-
able (IGKV) gene utilization, identity percentages, and 
complementarity determining region 3 (CDR3) lengths. 
This comprehensive analysis establishes a foundational 
framework for understanding the genetic compositions 
and potential functional attributes of the identified anti-
bodies. To verify that the antibody was expressed. We 
transfected twenty pairs of heavy and light chain plas-
mids into HEK293T cells for expression. The supernatant 
containing the expressed antibodies was collected and 
subjected to purification via a purification column. The 
successful expression of the antibodies was confirmed 
through analysis by reducing SDS‒PAGE.

To validate whether the antibody can interact with 
FMDV, we used indirect ELISA to assess the FMDV 146S 
binding of 15 mAbs (500 ng/ml). Among the tested anti-
bodies, No. 4, 31, 34, 49, 56, 57, 63, 109, 119, 121 and 123 
exhibited reactivity with FMDV O/Cathay. Additionally, 
No. 4, 31, 34, 49, 56, 57, 63, 121 and 123 demonstrated 
reactivity with FMDV O/MYA98 (Fig. 4). To further ver-
ify that the antibody reacts with FMDV, we performed 
IFA with 1 µg/mL mAbs and observed specific fluores-
cence only at six mAbs with FMDV O/Cathay and four 
mAbs with FMDV O/Mya98, indicating the reactivity 
of the antibodies with their corresponding FMDV 146S. 
These findings suggest that the tested mAbs can effec-
tively recognize and bind to FMDV (Fig. 5).

The rapid platform developed in this study for the 
efficient production of serotype O-specific antibodies 

Fig. 2  Western blot analysis of Biotin-labeled FMDV 146S. Lane 1: 
Non-labeled FMDV 146S. Lane 2: Biotin-labeled FMDV 146S. This 
analysis revealed the presence of two additional bands of 10–30 kDa 
for the biotin-labeled FMDV 146S in comparison to the nonlabeled 
FMDV 146S
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against FMDV serves as a foundation for the rapid 
generation of specific antibodies targeting other path-
ogens. Further integration of this platform with micro-
array technology can lead to the establishment of a 
comprehensive system capable of promptly responding 
to newly emerging pathogens and producing specific 
antibodies. The adoption of this platform represents a 
significant advancement over conventional antibody 
generation methods such as hybridoma technology, 
positioning it as the leading approach for monoclonal 
antibody production. This technology offers several 
advantages, including high-throughput capacity, pres-
ervation of natural antibody diversity, short processing 
time, high efficiency, and ease of operation, effectively 
meeting the requirements for rapid antibody produc-
tion. The widespread implementation and continued 
development of this technology hold promising pros-
pects for the future of antibody-based therapies.

Owing to their efficiency in protein expression, 
HEK293T cells are widely used in biomedical research 
and biopharmaceutical production. Target genes are 

introduced into HEK293T cells via methods such as 
lipid-mediated transfection, electroporation, or virus-
mediated transfection. HEK293T cells are frequently 
used for recombinant protein expression (Jiang et  al. 
2022), especially for antibody production (Li et  al. 
2021; Ryu et  al. 2022). They produce correctly folded 
and functional proteins, making them invaluable in cre-
ating therapeutic antibodies, vaccines, and viral vectors 
for gene therapy and vaccine development.

Mice were chosen as immunocompetent animals 
because of their well-established role in immunological 
research. The selection of mice as immunization hosts 
was based on several practical considerations, includ-
ing their short immunization cycles, cost-effectiveness, 
and ease of handling. These factors collectively make 
mice a favorable choice for antibody production in our 
study. However, it is important to acknowledge that 
other animals, including rabbits, pigs, cattle (Kurosawa 
et al. 2012; Ramirez Valdez et al. 2023; Sok et al. 2017; 
Stefan et  al. 2014), and even humans (Gilman et  al. 
2016; Iizuka et  al. 2011; Liao et  al. 2009; Sanam et  al. 

Fig. 3  PCR amplification of the VH and VL variable regions. A The results of antibody heavy chain amplification. B The results of antibody light chain 
amplification
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2016), can also be used as suitable targets for immuni-
zation in similar studies.

Conclusion
In conclusion, this research demonstrated the utiliza-
tion of a rapid platform for the generation of highly 
specific monoclonal antibodies against serotype O 
FMDV. Our findings highlight the efficiency and speed 
of this platform in producing monoclonal antibodies 

that specifically target serotype O of FMDV. Compared 
with conventional hybridoma methods employed for 
antibody production (Steinitz 2009), this platform sig-
nificantly reduces the time required and allows for the 
acquisition of a larger repertoire of monoclonal anti-
bodies. Compared with the existing methods for pro-
ducing antibodies against bovine and porcine FMDV 
via this technology, our approach offers the advantages 
of lower costs and simpler procedures (Cao et  al. 2022; 

Table 1  IMGT analysis of the antibody sequence

NO Heavy chain Light chain

IGHV Identity CDR3 length IGKV Identity CDR3 length

4 1–2 76.5% 13 3–11 68.7% 9

15 1–2 76.4% 13 4–1 84.1% 9

31 1–2 74.4% 13 7–3 77.7% 9

33 1–2 74.4% 13 7–3 77.7% 9

34 1–2 74.4% 13 7–3 77.4% 9

39 1–2 74.4% 13 7–3 77.0% 9

49 1–2 74.4% 13 1–17 76.1% 9

55 1–2 74.4% 13 5–2 74.5% 9

56 1–2 74.4% 13 7–3 77.7% 9

57 1–2 74.4% 13 7–3 78.4% 9

58 1–2 74.4% 13 7–3 78.4% 9

63 1–2 74.4% 13 1–9 81.8% 9

71 1–2 75.8% 13 1–9 81.8% 9

76 1–2 74.4% 13 7–3 77.7% 9

82 1–2 74.4% 13 4–1 84.1% 9

109 1–2 74.4% 13 1–16 73.6% 9

114 1–2 74.4% 13 7–3 77.7% 9

119 1–2 74.4% 13 3–11 70.9% 9

121 1–2 74.4% 13 7–3 77.7% 9

123 1–2 73.8% 13 3–15 71.7% 9

Fig. 4  Indirect ELISA results of 15 expressed antibodies. Indirect ELISA results of 15 expressed antibodies against FMDV O/Mya98 
146S (A) and FMDV O/Cathay 146S (B)
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Li et al. 2021). Among the more than 100 screened spe-
cific B cells, 83 heavy chain gene sequences and 39 light 
chain gene sequences were successfully obtained. While 
only 20 pairs of heavy and light chains were successfully 
matched, we can further increase the antibody diversity 
through artificial pairing (Marks et  al. 1991). The plat-
form  established in this work allows for the rapid prepa-
ration of pathogen-specific antibodies. This enables the 
swift production of diagnostic or therapeutic antibodies 
against emerging pathogens, achieving a rapid response 
capability.
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