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Abstract 

Porcine epidemic diarrhea virus (PEDV) is a highly infectious intestinal coronavirus that poses a significant threat 
to the pig industry because of its strong virulence and propensity for mutation and recombination. PEDV is classified 
into three major genotypes based on the spike (S) gene sequence: G1 (classical), G2 (variant), and S-INDEL (character-
ized by nucleotide insertions/deletions in the S gene). Both the G1 and G2 genotypes have been frequently detected 
in China, whereas the S-INDEL strain has rarely been reported or isolated. In this study, we isolated a PEDV S-INDEL 
strain, designated EJS6, from a pig farm experiencing severe diarrhea in Jiangsu Province, China. Genetic evolution 
analysis revealed that the Chinese S-INDEL strains represented by EJS6 presented sequence differences from other 
S-INDEL strains isolated in Europe and the United States, forming a new branch within the S-INDEL genotype. Com-
pared with the G2 strain EHuB4, EJS6 presented a lower viral titer, smaller plaque size, and reduced syncytium-forming 
ability in Vero cells. We also compared the pathogenicity of EJS6 and EHuB4 in 5-day-old suckling piglets. Both strains 
exhibited similar levels of fecal virus shedding in the infected piglets; however, the histopathological and mortality 
results indicated that the pathogenicity of the EJS6 strain was weaker than that of the EHuB4 strain. In summary, we 
successfully isolated the first Chinese PEDV S-INDEL strain and characterized its genetic evolution and pathogenicity, 
thereby enhancing our understanding of the prevalence of PEDV in China.
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Introduction
Porcine epidemic diarrhea virus (PEDV), a member of 
the Alphacoronavirus,  within the family Coronaviri-
dae, causes diarrhea, vomiting, anorexia, dehydration, 
and death in piglets (Have et al. 1992). Although pigs of 
all ages can be infected and exhibit varying degrees of 

symptoms, the condition is particularly severe in suckling 
piglets, with a mortality rate reaching 100% (Chen et al. 
2011). PEDV is an enveloped, single-stranded positive-
sense RNA virus with a full-length genome of approxi-
mately 28 kb. The genome comprises seven open reading 
frames (ORFs) organized in the order ORF1a, ORF1ab, 
spike (S) glycoprotein gene, ORF3 accessory protein-
encoding gene, envelope (E) gene, membrane (M) gene, 
and nucleocapsid (N) gene (Song and Park 2012). Like 
other coronaviruses, the S protein of PEDV is heavily gly-
cosylated and plays a crucial role in virus entry, immuno-
genicity, and pathogenicity (Li et al. 2016). Consequently, 
the S gene is considered an essential target for under-
standing the genetic relationships and epidemiological 
profiles of field PEDV isolates (Chen et al. 2013).
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PEDV can be classified into at least three major geno-
types based on the sequence of the S gene: G1 (classical), 
G2 (variant), and S-INDEL (with insertions and dele-
tions in the S gene). The prototype strain of G1 PEDV, 
CV777, was first identified in Europe in the 1970s (Wood 
1977), with reports of its occurrence in China as early 
as the 1980s (Chen et al. 2010). However, the G1 PEDV 
only sporadically circulated in the swine population. The 
G2 (G2a, G2b and G2c) PEDV is a highly virulent vari-
ant that emerged in late 2010. Currently, G2 PEDV has 
become the dominant strain worldwide and circulates in 
swine farms across Asia and North America, resulting in 
enormous economic losses to the swine industry (Chen 
et  al. 2011; Lin et  al. 2016; Ojkic et  al. 2015; Sun et  al. 
2015; Zhao et al. 2020).

The S-INDEL strain, represented by OH851, was ini-
tially identified in the United States in 2014 (Wang 
et al. 2014). Owing to its unique genetic characteristics, 
particularly the insertions and deletions in the S gene 
of S-INDEL strains compared with the prevalent G2 
strain in the United States, this genotype was designated 
S-INDEL. Currently, S-INDEL PEDV is epidemic mainly 
in Europe and the United States (Boniotti et  al. 2016; 
Chen et al. 2016a, b; Grasland et al. 2015; Mesquita et al. 
2015; Stadler et al. 2015; Wang et al. 2014) and has also 
been reported in several Asian countries, such as South 
Korea and Japan (Kim et  al. 2024; Lee and Lee 2014; 
Van Diep et  al. 2015). In China, there were few reports 
of PEDV S-INDEL strain until 2021. Our group detected 
one S-INDEL-positive clinical sample in 2015 and deter-
mined its genome sequence (GenBank accession number 
KU847996). Intriguingly, the S-INDEL strain appeared 
to have been epidemic in China since 2021, with a total 
of 13 PEDV S-INDEL genome sequences from Chinese 
swine populations uploaded to NCBI since that time. 
However, there have been no reports of successful isola-
tion of the S-INDEL strain in China until now.

In this study, we successfully isolated a PEDV S-INDEL 
strain, named EJS6, from a pig farm experiencing PED 
outbreaks in Jiangsu Province, China, in late 2022. We 
also determined the genome sequence of EJS6 and its 
genetic characterization. Additionally, we investigated 
the pathogenicity of the EJS6 strain in 5-day-old suckling 
piglets to enhance our understanding of the pathogenesis 
of the PEDV S-INDEL strain in China.

Results
Isolation and identification of the PEDV S‑INDEL strain EJS6
In 2022, a widespread outbreak of piglet diarrhea and 
mortality occurred on a pig breeding farm in Jiangsu 
Province, China. Intestinal samples were collected from 
piglets with severe diarrhea and tested for known viruses 

associated with piglet diarrhea, including PEDV, trans-
missible gastroenteritis virus (TGEV), porcine deltac-
oronavirus (PDCoV), and porcine rotavirus (PoRV), via 
RT-PCR with specific primers. The results revealed that 
all the tested intestinal samples were positive for PEDV 
(Fig.  1A), indicating that the piglet diarrhea observed 
at this farm might have been caused by PEDV. To fur-
ther identify the genotype of PEDV responsible for this 
outbreak, we sequenced the S gene from the collected 
intestinal samples. The analysis revealed that the S gene 
exhibited unique insertions and deletions similar to 
those of the S-INDEL strains reported in Europe and the 
United States.

Given that there have been no prior reports of suc-
cessful isolation of the PEDV S-INDEL strain in China, 
we attempted to isolate the virus from the collected 
intestinal samples. After three blind passages, typical 
cytopathic effects (CPEs), including cell fusion and syn-
cytium formation, were observed. An indirect immuno-
fluorescence assay (IFA) demonstrated that the PEDV 
N-specific monoclonal antibody (mAb) produced a spe-
cific fluorescence reaction in Vero cells inoculated with 
the isolated virus, whereas no fluorescence signal was 
detected in mock-infected cells (Fig. 1B), confirming the 
successful isolation of PEDV. The S gene was cloned from 
the isolated PEDV, and its sequence was determined. 
Sequencing analysis further confirmed that the isolated 
PEDV belongs to the S-INDEL genotype and was desig-
nated EJS6.

Phylogenetic analysis of the whole‑genome and S gene 
sequences of EJS6
To better understand the genetic evolution of the isolated 
EJS6 strain, we determined its whole-genome sequence 
(GenBank accession number PQ768103). Phylogenetic 
trees based on the whole-genome and S gene sequences 
classified the EJS6 strain into the PEDV S-INDEL geno-
type, which presented 98.6% similarity to the whole 
genome of the reference S-INDEL strain OH851 (Fig. 2A) 
and 97.6% nucleotide similarity for the S gene (Fig. 2B). 
Additionally, we examined the reported timeline of 
PEDV S-INDEL strains and noted a significant increase 
in their prevalence, particularly among strains situated 
on the same evolutionary branch as EJS6. This observa-
tion prompted us to explore the molecular genetic char-
acteristics of the PEDV S-INDEL genotype. By utilizing 
the PEDV S gene sequences, we constructed a Bayesian 
phylogenetic tree, which revealed the existence of three 
distinct groups among the S-INDEL strains. Notably, 
our analysis traced the classic S-INDEL strains back to 
2010, whereas another group, predominantly consisting 
of strains from Europe, originated approximately 2008. 
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In contrast, more recent outbreaks of S-INDEL strains, 
mainly from China, formed a distinct and independent 
group, highlighting significant genetic divergence within 
the PEDV S-INDEL genotype (Fig.  2C). Furthermore, 
Bayesian skyline plot (BSP) analysis indicated that the 
effective population size and relative genetic diversity 
of the PEDV S-INDEL lineage increased steadily until 
approximately 2013. This growth plateaued during the 
period from 2015–2020, followed by a decline in both 
population size and genetic diversity (Fig.  2D). These 
findings suggest that the PEDV S-INDEL genotype may 
be poised for localized outbreaks in the near future.

Codon usage patterns in PEDV S‑INDEL strains
The results from the abovementioned phylogenetic tree 
analysis classified the PEDV S-INDEL strains into three 
distinct groups, highlighting significant diversity within 
the PEDV S-INDEL genotype. To further elucidate 
the factors contributing to the formation of the three 
S-INDEL groups, we analyzed the codon usage patterns 
of the S gene of the PEDV S-INDEL strains. The results 
revealed distinct clustering patterns among the three 
groups: group 1 (classic European and American strains), 
group 2 (newly emerged European strains), and group 
3 (main strains from China) (Fig. 3A). Furthermore, the 
effective number of codons (ENC) analysis indicated that 

the average ENC value of the S gene of S-INDEL strains 
was 47, exceeding the generally accepted threshold of 35 
(Lu et  al. 2023), which serves as a cutoff for determin-
ing whether a gene is influenced by mutation pressure 
or other factors, such as translational selection (Fig. 3B). 
As illustrated in Fig. 3C, all data points representing the 
ENC values of the S gene of the S-INDEL strains fell 
below the expected curve, suggesting that mutation pres-
sure is not the sole factor influencing the codon usage 
bias (CUB) of the S gene. Moreover, group 3 did not over-
lap with groups 1 and 2, indicating a significant impact of 
natural mutation on group 3. Therefore, the CUB of the 
S gene of S-INDEL strains is shaped by both mutation 
pressure and natural selection.

In addition, parity rule 2 (PR2) analysis revealed that 
A ≠ U and C ≠ G in the S gene of the S-INDEL strains, 
suggesting that the influences of mutation pressure and 
natural selection are not equal in shaping the codon 
usage of the S gene (Fig.  3D). Furthermore, we calcu-
lated the relationships between the GC3s and GC12s of 
three groups of S-INDEL strains in the S gene. The cor-
relation coefficients of the group 1, group 2, and group 
3 strains were 0.057, 0.168 and 0.091, respectively. Con-
sequently, the natural selection restriction rates of the S 
gene in these three groups were 94.3%, 83.2%, and 90.9%, 
respectively (Fig.  3E). These results suggest that natural 
selection is the primary factor shaping the CUB of the S 
gene. To further investigate the impact of selection pres-
sure on the S protein of the S-INDEL strains, we identi-
fied four amino acid residues (aa 83, 113, 114 and 156) in 
a positively selected state (Table 1). These selected amino 
acids are located in the D0 region of the PEDV S1 pro-
tein. Previous studies have reported that the D0 region of 
the PEDV S1 protein is associated with the sugar-binding 
ability of the virus (Deng et al. 2016). Therefore, our find-
ings imply that the ability of PEDV to utilize carbohy-
drates for host entry may be linked to these four sites.

Characteristic amino acid changes in the S protein 
of the PEDV S‑INDEL strains
Mutations in the S protein of coronaviruses can signifi-
cantly influence their receptor-binding efficiency and 
immunogenicity (Li et al. 2023; Rattanapisit et al. 2021). 
The S gene across different PEDV strains consistently 
presented insertions and deletions, which were par-
ticularly pronounced in the PEDV S-INDEL strains. By 
comparing the amino acid sequence of the S protein of 
the newly isolated EJS6 strain with those of other PEDV 
reference strains, including those from groups G1a/b, 
G2a/b/c and other PEDV S-INDEL strains (Fig.  4), we 
identified three distinct regions characterized by inser-
tions and deletions in the amino acid sequence of the S 
protein. These regions are located at amino acid positions 

Fig. 1 Virus isolation and identification of the PEDV S-INDEL 
strain EJS6. A RT-PCR was conducted to detect the presence 
of PEDV, PDCoV, TGEV, and PoRV in the collected intestinal 
samples. M: 2,000 bp DNA marker; lane 1: PEDV; lane 2: 
PDCoV; lane 3: TGEV; lane 4: PoRV. B Identification of EJS6 
in Vero cells via indirect immunofluorescence assay using 
a PEDV N-specific mAb. The fluorescence images were 
captured via a fluorescence microscope (Olympus). Scale 
bars, 100 μm
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54–65, 136–143, and 156–169. At positions 54–65, both 
the S-INDEL and G1 strains exhibited identical pat-
terns of deletions and mutations, establishing this as 
a critical protein sequence marker for differentiating 
S-INDEL strains from G2a/b/c strains. In contrast, the 
Chinese S-INDEL strains represented by EJS6 presented 
unique protein sequence markers in the regions spanning 
amino acids 136–143 and 156–169, distinguishing them 
from other S-INDEL strains. Notably, Chinese S-INDEL 
strains exhibited a distinct pattern of deletions and muta-
tions in the region of amino acids 136–143, indicating a 
greater degree of variability in this region.

Comparison of the infection properties of EJS6 and EHuB4 
in Vero cells
To further understand the infection properties of EJS6 
in Vero cells, we used a representative PEDV G2c strain, 
EHuB4, which was isolated in China in 2020 as a con-
trol. Both EJS6 and EHuB4 were analyzed at the 10th 
passage. Compared with those in the EHuB4 strains, 
the syncytia formed in the EJS6-infected Vero cells were 
smaller (Fig. 5A), a finding that was further corroborated 
by IFA with a PEDV S-specific mAb (Fig.  5B). Plaque 
assays demonstrated significantly smaller plaque sizes for 
EJS6 compared to EHuB4 (Fig.  5C, D). Additionally, we 

Fig. 2 Phylogenetic tree and Bayesian spatiotemporal speculation of the PEDV S-INDEL strains. A and B Phylogenetic trees were constructed 
via the maximum likelihood (ML) approach on the basis of the complete genome sequences (A) and S gene sequences (B) of PEDV. Different 
colors denote the defined clusters: yellow, PEDV G1; red, PEDV S-INDEL; purple, PEDV G2a; green, PEDV G2b; blue, PEDV G2c. The colored blocks 
on the right illustrate the temporal distribution of strains across various timeframes. C An MCC tree of the S gene was constructed via BEAST V. 
1.8.2. The x-axis represents the time in years. The colored blocks on the right correspond to different groups within the PEDV S-INDEL strains. D 
Demographic history inferred via a skyline coalescent tree prior. The interval formed by the dashed line represents the 95% HPD of the product 
of generation time and effective population size Ne(t). The red line indicates the mean, and the blue line represents the median
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Fig. 3 Codon usage pattern analysis of the S gene of the PEDV S-INDEL strains. A Principal component analysis (PCA) of the PEDV S-INDEL S gene. 
B and C Effective number of codons (ENC) (B) and ENC-GC3s plot (C) of the PEDV S-INDEL S gene. The curve indicates the standard expected values. 
The differently colored circles represent the observed ENC-GC3 values for individual clusters. D Diagonal analysis of the S gene of the PEDV S-INDEL 
strains. E Neutral analysis of the S gene of different S-INDEL strains, with each point representing an independent PEDV S-INDEL strain. Groups 1, 2 
and 3 are indicated in red, yellow and green, respectively



Page 6 of 13Zhang et al. Animal Diseases             (2025) 5:8 

compared the proliferation dynamics of these two PEDV 
strains under identical infection conditions. The results 
revealed that EJS6 reached its peak titer at 18  h post 
infection (hpi), with a viral titer of  104.25  TCID50/mL, 
whereas EHuB4 peaked at 24 hpi, with a viral titer of up 
to  108.0  TCID50/mL (Fig. 5E). These findings indicate that 
EJS6 has a lower replication capacity in vitro than EHuB4 
does.

Comparison of the pathogenicity of EJS6 and EHuB4 
in neonatal piglets
To compare the pathogenicity of EJS6 and EHuB4 in 
piglets, 5-day-old piglets were orally inoculated with 
5 ×  104.2  TCID50 of either EJS6 or EHuB4, and the pig-
lets inoculated with DMEM served as the control group 
(Fig. 6A). Piglets in the PEDV-inoculated groups began to 
develop severe diarrhea at 2  days post inoculation (dpi) 
and died at 4 dpi (Table  2). Notably, despite mortality 
events occurring in both PEDV-inoculated groups, there 
were notable differences in the morbidity and mortality 
timelines. In the EHuB4 group, mortality was observed 
on days 7, 8 and 9 post infection, with two out of five pig-
lets dying on day 7 and one out of five on day 8, and all 
five piglets died within 9  days of infection. Conversely, 
the EJS6 group experienced earlier mortality, with one 
piglet (1/5) died  on day 4 post infection, followed by 
another piglet (2/5) that died on day 7. Importantly, the 
remaining three piglets in the EJS6 group survived until 
the end of the experiment (Fig.  6B). Similarly, the RT-
qPCR results revealed that the peak number of viral RNA 
copies in the anal swabs of the EHuB4 group was  1011.82 
copies/mL, whereas it was  1011.89 copies/mL in the EJS6 
group (Fig. 6C). Furthermore, the EJS6 group presented 
milder intestinal lesions than did the EHuB4 group, 
which presented typical gross intestinal lesions (Fig. 6D).

Histopathological analysis of the duodenum, jejunum, 
and ileum in the control group revealed a well-preserved 
tissue structure characterized by intact villus architecture 
and the absence of obvious abnormalities. In contrast, 
the intestinal epithelium of the duodenum, jejunum, and 
ileum in the EHuB4 group exhibited significant atrophy, 
characterized by shortened, blunted, and fused villi. In 
the EJS6 group, notable villus shortening was observed 
exclusively in the jejunum and ileum (Fig.  7A). The 
immunohistochemistry results revealed a substantial 
presence of PEDV antigen-positive signals in the small 
intestinal villous epithelial cells of the jejunum and ileum 
in the EHuB4 group, whereas in the EJS6 group, positive 
signals were detectable only in the ileum. These findings 
suggest that the pathogenicity of the EJS6 strain is weaker 
than that of the EHuB4 strain, indicating distinct tissue 
tropism between the two strains (Fig. 7B).

Discussion
Originally reported in Europe, PEDV has become the 
most important intestinal pathogen affecting swine in 
China, particularly since the emergence of G2 PEDV var-
iants in 2010 (Chen et al. 2012; Lin et al. 2016). In 2013, 
the outbreak of PEDV S-INDEL variants in the United 
States and neighboring countries, including Canada 
and Mexico, led to substantial economic losses (Ojkic 
et  al. 2015; Vlasova et  al. 2014). The dynamic evolution 
of PEDV poses formidable challenges for the prevention 
and control of this disease. Therefore, obtaining timely 
insights into clinical epidemic strains, as well as variation 
patterns and identifying vaccine candidates are crucial 
for the effective prevention and control of PED.

In this study, we successfully isolated a PEDV 
S-INDEL strain, designated EJS6. To our knowledge, this 
is the first report of the isolation of a PEDV S-INDEL 
strain in China. The results of in vitro replication kinet-
ics demonstrated that the proliferation capability of the 
EJS6 strain was lower than that of the EHuB4 strain, 
with a viral titer  103.75  TCID50/mL lower than that of the 
EHuB4 strain. The lower viral titer appears to be a com-
mon characteristic of all S-INDEL isolates because the 
reported titers of the two S-INDEL strains in previous 
studies ranged from  104.5 to  105.0  TCID50/mL (Gallien 
et al. 2019; Schumacher et al. 2022). However, the lim-
ited number of isolated S-INDEL strains currently hin-
ders our ability to definitively establish whether a lower 
viral titer is a universal property among all S-INDEL 
isolates. Additionally, the syncytia and plaques formed 
by the EJS6 strain were smaller than those formed by 
the EHuB4 strain. Previous studies have reported that 
the S protein of coronaviruses is associated with viral 
replication capability, cell fusion, and syncytial forma-
tion (Sato et al. 2011; Wanitchang et al. 2019). Thus, we 
systematically analyzed the molecular differences in the 
S protein and found that the amino acid region span-
ning positions 54–65 in the S protein can serve as a key 
molecular marker distinguishing S-INDEL strains from 
G2a/b/c strains. Notably, the Chinese S-INDEL strains 
represented by EJS6 exhibit a unique pattern of dele-
tions and mutations in the amino acid region 136–143, 
indicating greater variability in this region. However, 
whether these deletions and mutations contribute to the 
observed variations in in  vitro replication characteris-
tics remains to be determined through the viral reverse 
genetics system.

A previous study revealed that PEDV S-INDEL 
strains may have originated from recombination 
events prior to 2010, with a backbone similar to that of 
G2 strains and the 5′ terminus of the S gene sequence 
derived from G1 strains, and the S genes of these 
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recombinants might have evolved independently, lead-
ing to genetic drift under field conditions (Guo et  al. 
2019). However, the clinical symptoms caused by dif-
ferent PEDV S-INDEL strains appear to be inconsist-
ent. Pathogenicity experiments conducted in both 
clinical and laboratory settings in the United States 
have demonstrated that the S-INDEL strain results in 
milder clinical symptoms (Chen et al. 2016a, b; Wang 
et al. 2014). Conversely, a PEDV S-INDEL outbreak in 
Germany (99.4% homology to the US S-INDEL strain 
OH851) reported diverse clinical manifestations, 
including unexpectedly high mortality rates in suck-
ling piglets on one of the farms (Mesquita et al. 2015; 
Stadler et  al. 2015). These discrepancies may reflect 
inherent pathogenicity variations among S-INDEL 
strains. Notably, the pathogenicity of the EJS6 strain 
appears to fall between the reported values from 
Europe and the United States. Although the patho-
genicity of the S-INDEL strain EJS6 was somewhat 
lower than that of the EHuB4 strain, it still resulted 
in a 100% incidence rate and a 40% fatality rate in 
laboratory settings. Compared with the EHuB4 strain, 
which exhibited PEDV antigen distribution in both 

the jejunum and ileum, the EJS6 strain demonstrated 
antigen localization restricted to the ileum. Previous 
studies have indicated that the mechanisms underly-
ing the pathogenicity and tissue tropism of PEDV may 
be related to the N-terminal sequence of the S protein 
(Hou et  al. 2017; Suzuki et  al. 2016, 2018); however, 
further evidence is needed to support this conclu-
sion. Other studies have reported that pregnant sows 
infected with the S-INDEL strain can confer a certain 
degree of protection to newborn piglets infected with 
the PEDV G2a U.S. strain (Goede et al. 2015). An ani-
mal experiment with weaned piglets demonstrated 
that both the American PEDV prototype strain and 
the PEDV S-INDEL strain could provide homologous 
or heterologous protection to each other (Chen et  al. 
2016a, b; Lin et  al. 2015a, b). Additionally, 3–4-day-
old piglets infected with the S-INDEL strain exhibited 
resistance to infection from the American prototype 
strain (Lin et  al. 2015a, b). Therefore, the EJS6 strain 
isolated in this study has the potential to be developed 
into a promising vaccine candidate capable of provid-
ing cross-protection against G2 PEDV infections.

Table 1 Positive selection sites in the S protein of PEDV S-INDEL strains

Protein aa FEL SLAC FUBAR MEME

dN‑ds p‑Value dN‑ds p‑Value dN‑ds Post. Pro ω p‑Value

Spike 83 12.183 0.0181 26.37367 0.019411 32.184 0.991 >100 0.01

113 7.778 0.0263 18.87243 0.039702 20.692 0.987 >100 0

114 9.518 0.0201 18.17151 0.055814 29.791 0.996 >100 0.03

156 25.795 0.0114 39.57619 0.007348 32.898 0.955 >100 0

Fig. 4 Characteristic amino acids in the S protein of different PEDV genotypes. Alignments of amino acid sequences at positions 54–65, 136–143 
and 156–169 of the S proteins from PEDV genotypes G1a/b and G2a/b/c, as well as American and European S-INDEL strains and Chinese S-INDEL 
strains
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Conclusion
In this study, we successfully isolated the first Chinese 
PEDV S-INDEL strain, EJS6, from clinical intestinal sam-
ples and characterized its genetic variation. We also com-
pared the infection properties and pathogenicity of EJS6 
with those of the EHuB4 strain, revealing that the PEDV 
S-INDEL strain EJS6 has a lower replication capability, 
results in the formation of smaller syncytia in Vero cells, and 
has lower pathogenicity in neonatal piglets. This study pro-
vides critical insights into the genetic diversity and attenu-
ated pathogenicity of emerging S-INDEL strains, advancing 
our understanding of PEDV epidemiology in China.

Methods
Sample collection, treatment and detection
Small intestine samples from piglets with severe diar-
rhea were collected from a farm in Jiangsu Province, 
China, in 2022. These samples were diluted threefold 
with phosphate-buffered saline (PBS), homogenized, 
and then centrifuged at 12,000 rpm for 10 min at 4°C. 
The resulting supernatants were filtered through a 
0.22-μm pore size filter (Millipore, USA) and pre-
served at −80°C for subsequent virus detection and 
isolation. For the detection of PEDV, total RNA was 
extracted and reverse transcribed into cDNA via the 

Fig. 5 Comparison of the infection properties of EJS6 and EHuB4. A Cytopathic effects (CPEs) in Vero cells infected with PEDV EJS6 or EHuB4 
(MOI = 0.1) at 12 hpi. Scale bars, 100 μm. B Formation of syncytia in Vero cells infected with EJS6 and EHuB4. An indirect immunofluorescence assay 
was conducted with a PEDV S-specific mAb. Scale bars, 100 μm. C Plaques of EJS6 and EHuB4 in Vero cells by plaque assay. D The mean plaque sizes 
of EJS6 and EHuB4 were determined by measuring the bounding rectangle areas of seven randomly selected plaques. E Growth kinetics of EJS6 
and EHuB4 in Vero cells
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TRIzol method and a Vazyme RNA reverse transcrip-
tion kit following the manufacturer’s instructions. PCR 
was subsequently conducted with primers targeting 
the S gene of PEDV. The sequences of the primers are 
listed in Table S1.

Cell culture and virus isolation
Vero cells (ATCC CCL-81) were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM; Gibco, USA) 

supplemented with 10% fetal bovine serum (FBS). Conflu-
ent Vero cells in a six-well cell culture plate were washed 
three times with PBS and then inoculated with 200 µL of 
the treated small intestine sample. After adsorption for 2 h, 
the inoculum was removed, and the cells were maintained 
in fresh DMEM containing 10  μg/mL trypsin. The cells 
were observed daily. If a typical CPE was observed, the cell 
cultures were collected and stored at −80°C. Otherwise, 
the cell cultures were collected, and blind passage was per-
formed for three passages until a typical CPE appeared.

Fig. 6 Pathogenicity of EJS6 and EHuB4 in 5-day-old piglets. A Schematic diagram of the animal experiment. Five-day-old piglets (six piglets 
per group) were inoculated orally with either EJS6 or EHuB4 (5 ×  104.2  TCID50/piglet). Piglets that received DMEM orally served as the control group. 
Two days postinfection, one piglet from each group was randomly selected for euthanasia to examine intestinal lesions. The remaining piglets were 
monitored for survival rates and fecal virus shedding over a period of 10 days. B The percentage of surviving piglets in each group. C Fecal virus 
shedding was measured in piglets at 0, 1, 3, 5, 7 and 9 days post infection. D Clinical symptoms and gross anatomical lesions observed in piglets 
after infection. Piglet photos of individuals and anatomy were captured 48 h post infection, whereas photos of the groups were taken on the fourth 
day following piglet infection
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Indirect immunofluorescence assay (IFA)
Cells infected or mock-infected with PEDV were washed 
with PBS, fixed with 4% paraformaldehyde and permea-
bilized with cold methanol. After being blocked with 5% 
bovine serum albumin, the cells were incubated with a 
mAb against the PEDV N or S protein and then with a 
fluorescein isothiocyanate (FITC)-conjugated goat anti-
mouse IgG antibody. Finally, the nuclei were stained with 
0.01% 4′,6-diamidino-2-phenylindole (DAPI), and the 
fluorescence images were visualized via a fluorescence 
microscope (Olympus).

Viral multistep growth curve
Vero cells in 12-well plates were inoculated with PEDV 
at an MOI of 0.001. The virus suspensions were col-
lected at 3, 6, 9, 12, 18, 24, 30, 36, 42 and 48 hpi. The 
50% tissue culture infectious dose of these collected 
samples was subsequently assayed as described previ-
ously (Nemeth et al. 2018).

Sequence and phylogenetic analysis
The complete genome sequence of the isolated EJS6 
strain was determined via the paired primers listed in 
Table S1. A total of 53 complete genome sequences and 
60 S gene sequences of PEDV were retrieved from the 
NCBI GenBank database (https:// www. ncbi. nlm. nih. 
gov/) to serve as reference sequences. Phylogenetic trees 
were constructed for both the whole-genome sequences 
and the S gene sequences. Detailed information about 
these sequences is provided in Table S2. Sequence align-
ment was conducted via MAFFT V.7.402 (Katoh and 
Standley 2013) to compare nucleotide and amino acid 

Table 2 Clinical observation records of 5-day-old piglets infected with PEDV strain EJS6 or EHuB4

dpi EJS6 EHuB4

Clinical observation Fecal consistency Clinical observation Fecal consistency

Normal Mild diarrhea Watery 
diarrhea

Normal Mild diarrhea Watery 
diarrhea

1 All active and eating well 5/5 0/5 0/5 All active, 60% with vomiting 
and anorexia

2/5 3/5 0/5

2 All active, 40% with vomiting 
and anorexia

2/5 1/5 2/5 All active, 100% with vomiting 0/5 5/5 0/5

3 All with lethargy, vomiting 
and anorexia

0/5 0/5 5/5 All with lethargy, vomiting 
and anorexia

0/5 0/5 5/5

4 0/5 0/5 5/5 0/5 0/5 5/5

5 0/4 0/4 4/4 0/5 0/5 5/5

6 0/4 3/4 1/4 0/5 0/5 5/5

7 All with lethargy and anorexia 0/3 3/3 0/3 0/3 1/3 2/3

8 0/3 3/3 0/3 0/2 1/2 1/2

9 All with lethargy, 66% with ano-
rexia

0/3 3/3 0/3 All died 0 0 0

10 1/3 2/3 0/3

Fig. 7 Histopathological examination of piglets after PEDV 
infection. Hematoxylin and eosin (H&E) staining (A) 
and immunohistochemical analysis (B) of the duodenum, 
jejunum, and ileum collected from piglets necropsied 
at 2 days post infection. All the tissue sections were observed 
under 100 × magnification. Scale bars, 200 μm

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Page 11 of 13Zhang et al. Animal Diseases             (2025) 5:8  

sequences. Maximum likelihood (ML) phylogenetic 
trees were generated via IQ-TREE V.1.6.5 (Nguyen 
et  al. 2015). The spatiotemporal dynamics of PEDV 
were inferred within a Bayesian framework via BEAST 
V.  1.8.2 (Baele et  al. 2017). Additionally, a coalescent 
Bayesian skyline model for the tree topologies was 
employed to estimate the effective population size over 
time. One chain with a length of 1 ×  109 converged to 
indistinguishable posterior distributions. We assessed 
convergence and mixing via Tracer software (V. 1.7) 
(Rambaut et  al. 2018), which implemented a burn-in 
period of 10% of the total chain length. All the param-
eter estimates yielded an effective sampling size > 200. 
The resulting phylogenetic trees were visualized with 
iTOL V. 4 (Interactive Tree of Life, http:// itol. embl. de/).

Codon usage patterns and positive selection analysis
The ENC, neutrality plot, and parity rule 2 bias plot 
for the encoded sequence of each PEDV S-INDEL 
strain were calculated via the Galaxy website (https:// 
galaxy. Paste ur. fr) and CodonW software. An ML tree 
was reconstructed on the basis of nonrecombinant 
sequences via Datamonkey (http:// www. datam onkey. 
org/). The methods employed to scrutinize positive 
amino acid sites included single likelihood ancestor 
counting (SLAC), fixed effects likelihood (FEL), mixed 
effects model of evolution (MEME) and fast uncon-
strained Bayesian approximation (FUBAR) (Kosako-
vsky Pond and Frost 2005; Murrell et  al. 2012, 2013; 
Smith et  al. 2015). Codons were deemed under selec-
tion if highlighted by at least three methods. Sites iden-
tified by a minimum of two algorithms were considered 
conservatively indicative of positive selection.

Animal experiments
Eighteen 5-day-old piglets sourced from a PEDV-nega-
tive farm were randomly assigned to three groups, with 
six piglets per group. The first group was orally admin-
istered the EJS6 strain (5 ×  104.2  TCID50 per piglet), the 
second group was orally administered the EHuB4 strain 
at the same dose as a positive control, and the negative 
control group was orally administered the same volume 
(5 mL) of DMEM. After inoculation, the mental state and 
fecal condition of the piglets were observed and assessed 
daily for 10  days (Fig.  6A). Anal swabs were collected 
each day, and virus shedding was detected via real-time 
reverse transcriptase quantitative PCR as described pre-
viously (Ding et al. 2023). On the second day post virus 
challenge, one piglet from each group was randomly 
selected for euthanasia to examine intestinal lesions, 
while the remaining piglets were euthanized on the tenth 
day post challenge.

Gross and histopathological examination
Tissue samples from the duodenum, jejunum and ileum 
were collected from euthanized piglets and then dehy-
drated, embedded and sectioned. The sections were used 
for histological and immunohistochemical examinations 
as described previously (Dong et al. 2016).

Statistical analysis
Statistical analysis was conducted via Student’s t test via 
GraphPad Prism 10.1.0 (GraphPad Software, CA, USA). 
P < 0.05 was considered statistically significant.
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