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Cas12a‑based diagnostic method 
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Abstract 

Fowl adenovirus (FAdV) serotype 4, recognized as the causative agent of hydropericardium syndrome (HPS) in chick-
ens, causes substantial economic losses in poultry farming. To develop a simple, rapid, and reliable diagnostic method 
for the timely detection of FAdV-4 nucleic acid, we integrated the CRISPR/Cas12a system with recombinase-aided 
amplification (RAA). This approach enables visual detection of FAdV-4 with a sensitivity of one genome copy. The 
results can be obtained within 40 to 50 min without the need for complex instrumentation, making it ideal for remote 
field applications. Using this method, we investigated the prevalence of FAdV-4 in both common farm poultry 
and wild birds. Our results indicated that the FAdV-4-positive rate in wild birds was 51.19%, suggesting that wild 
birds may serve as specific reservoirs for this virus. In summary, we present a sensitive, swift, accurate, and inexpen-
sive detection method for FAdV-4, along with an investigation of its epidemic situation in birds. Our study advances 
the detection and epidemiological understanding of FAdV-4 transmission among farm poultry and wild birds.
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Introduction
The adenovirus family Adenoviridae is classified into 
mammalian adenoviruses and fowl adenoviruses on the 
basis of differences in their infection reservoirs (Anda-
var et al. 2023). There are 12 subtypes of poultry adeno-
viruses. Fowl adenovirus (FAdV) serotype-4, which is 
considered the causative pathogen of hydropericardium 
syndrome (HPS), causes significant economic losses 
to poultry farms. FAdV-4 infection manifests severe 
symptoms such as lethargy, disordered feathers, loss of 
appetite, and green excretion, leading to typical patho-
logical changes such as hepatitis, pericardial effusion, and 
nephritis (Grgic et  al. 2013; Sultan et  al. 2021). FAdV-4 
was first reported in Pakistan in 1987, where it was 
named ’Angara Disease’ because it was first identified 
in Angara Goth, near Karachi. Subsequently, outbreaks 
of FAdV-4 infection have spread to other countries, 
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including Iraq, Japan, Russia, Korea, and China (Abdul-
Aziz and Hasan 1995; Li et al. 2016; Lobanov et al. 2000).

FAdV-4 infections are typically endemic in poultry 
farms, with broiler chickens being the most affected tar-
gets. These chickens are most likely to develop hydrop-
ericardium syndrome (HPS) following FAdV-4 infection. 
The mortality rate in FAdV-4-infected chickens aged 
three to five  weeks can reach as high as 80% (Xie et  al. 
2023;  Grgic et  al. 2013). FAdV-4 was also detected and 
isolated from waterfowl, including ducks, geese ducks 
and mandarin ducks (Manzoor et  al. 2013; Pan et  al. 
2017a; Roy et  al. 2004). Recently, wild birds, such as 
pigeons, ostriches, crows, and quails, were shown to be 
infected with FAdV-4 (Kumar et  al. 2010). Wild birds 
may act as natural reservoirs for FAdV-4, contributing 
to the pandemic of FAdV-4 infection (Shen et al. 2019). 
The epidemiological investigation of FAdV-4 in both 
farm and wild birds can enhance our understanding of 
the transmission dynamics among various host species, 
offering valuable insights for the control and prevention 
of FAdV-4.

FAdV-4 is an unencapsulated double-stranded DNA 
virus that expresses both major structural and nonstruc-
tural proteins. Hexon, penton base, fiber 1, and fiber 2 
are the main structural proteins of the FAdV-4 capsid. 
Hexon, a monomer of FAdV-4, consists of two conserved 
pedestal regions, P1 and P2, and hexon has been widely 
used in virus detection and vaccine development (Rob-
erts et al. 2006).

The present detection methods for FAdV-4 include 
TaqMan-based real-time PCR (Wang et al. 2017), droplet 
digital PCR (Shen et al. 2019), LAMP real-time turbidity 
(Yuan et al. 2019), and CRISPR/Cas13a-based lateral flow 
(Yin et  al. 2023). By combining RAA with the CRISPR/
Cas12a system, a diagnostic method was developed for 
the rapid and precise detection of FAdV-4. This method 
completes the detection process in 40  min, resulting in 
high specificity and sensitivity without the need for spe-
cialized equipment. Based on this diagnostic method, 
epidemiological investigations have been conducted in 
broiler chickens, laying hens, ducks, geese, pigeons, and 
wild geese in central China.

Results
Optimization of RAA/Cas12a‑based cleavage for FAdV‑4 
detection
Figure  1 illustrates the workflow of RAA/Cas12a-
mediated FAdV-4 detection. First, the RAA produced 
exponential amplification of the FAdV-4 target double-
stranded DNA (dsDNA) in the presence of two primers 
at a relatively low temperature (37 °C). Next, the Cas12a 
protein, which specifically recognizes and cleaves the 
target dsDNA with the aid of crRNA, breaks the dsDNA 
to generate sticky ends. Finally, with the activation of 
LbCas12a nuclease trans-cleavage activity, the FAM- and 
BHQ1-labeled ssDNA reporters are cleaved, releasing 
signals that can be visually detected under UV or blue 
light.

Fig. 1  Schematic diagram of RAA preamplification and Cas12a/crRNA cleavage for the detection of FAdV-4 nucleic acids
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To assess the efficiency of crRNA, three pairs of crR-
NAs were designed to target the hexon gene, with pMD-
19 T-hexon used as the template. Fluorescence intensity 
was measured across reactions containing different 
crRNAs, and crRNA-2 presented the highest fluores-
cence intensity, indicating its use in further experiments 
(Fig. 2A and 2B).

To validate the efficiency of the RAA primers, three 
pairs of RAA primers were designed for the amplification 
of the target hexon gene. The RAA products underwent 
Cas12a-mediated cleavage reactions, and the fluores-
cence intensity of these reactions was calculated. RAA 
primer two presented the highest fluorescence intensity 
(Fig. 2C and 2D).

Optimization of RAA/Cas12a‑based cleavage reactions
To confirm the suitable reaction temperature and time 
for the Cas12a-mediated cleavage assay, 5  µl of the 
RAA amplification products were used in the Cas12a/
crRNA assay at temperatures of 31, 33, 35, 37, 39, and 
41  °C for 30  min. The highest fluorescence intensity 
was observed at 37  °C (Fig.  3A and 3B). Additionally, 
5 µll of the RAA amplification products were used 
in the Cas12a/crRNA assay for reaction times of 0, 

5, 10, 15, and 20  min. The optimal reaction time was 
determined by assessing the fluorescence intensity 
(Fig.  3C and 3D). The fluorescence intensity gradu-
ally increased with increasing reaction time, with the 
highest intensity observed at 15 min, after which it sta-
bilized. All the results indicated that the optimal con-
ditions for Cas12a-based cleavage reactions were 37 °C 
for 15 min.

Specificity and sensitivity analysis of the RAA/Cas12a‑based  
diagnostic method
The specificity of the RAA/Cas12a-based method 
was confirmed by testing against several other com-
mon avian viruses, including FAdV-1, FAdV-7, 
FAdV-8a, FAdV-8b, FAdV-9, FAdV-10, IBDV, MDV, 
ILTV, ALV-J, IBV, NDV, H5 AIV, and H7 AIV. Fluo-
rescence or brightness was observed only in samples 
containing FAdV-4 (Fig.  4A and 4B). To assess sen-
sitivity, tenfold serial dilutions of pMD19-T-hexon 
were used as templates for RAA/Cas12a-based detec-
tion. The limit of detection (LOD) was determined to 
be one copy for visual observation under LED blue 
light (Fig. 4C and 4D).

Fig. 2  Optimization and validation of crRNA screening and RAA amplification. A Different crRNA screening and visual observation under UV 
and blue light. B The fluorescence intensity of three pairs of crRNAs cleaved. C Three pairs of RAA primers were used to amplify the FAdV-4 gene, 
Cas12a/crRNA cleavage was performed, and the results were subsequently observed under UV and blue light. D Fluorescence intensity of three 
pairs of RAA primers. NTC, no template control. The error bars represent the SEMs; n = 3. *, p < 0.05; **, p < 0.01; ***, p < 0.001,
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Inspection of the RAA/Cas12a‑based diagnostic method 
in bird clinical samples
A total of 30 clinical samples collected from different 
birds were screened via both qPCR assays and the the 
proposed method, with positive samples further con-
firmed via DNA sequencing. The results from the RAA/
Cas12a method indicated that 11 samples were posi-
tive and 19 were negative, perfectly matching the results 
of the qPCR assay (Fig.  5A and 5B). The RAA/Cas12a 
method proved to be accurate for the detection of 
FAdV-4 in clinical samples (Fig. 5C).

Epidemiological investigation of FAdV‑4 in birds in China
FAdV-4 infects various host species, including farm 
poultry and wild birds. We detected 640 samples, with 
an overall positive rate of 30.78%. The detection rates of 
FAdV-4 were further categorized according to species. 
Among the farm poultry samples, 66 out of 236 broiler 
chicken samples, 41 out of 197 laying hen samples, one 
out of 23 duck samples, and three out of 16 geese sam-
ples tested positive. Among the wild bird samples, 57 out 
of 84 pigeon samples, 28 out of 59 wild goose samples, 
and one out of 25 crow samples were positive. Among 

poultry farms, broiler chickens had the highest positive 
rates. In wild birds, the highest positive rate was 67.86% 
in pigeons, which deserves special attention (Table 1).

Discussion
HPS, which is caused primarily by FAdV-4, has led to 
large-scale outbreaks in China since 2015. FAdV-4 exhib-
its high transmissibility to infect various host species 
(Xue et  al. 2023). In farm poultry, FAdV-4 can spread 
horizontally among chickens within a short period 
through both vertical and horizontal transmission. 
Wild birds commonly have a wide range of movements, 
with some foraging for farm feed. These characteristics 
expose wild birds directly to a broad range of potential 
pathogens (Wang et al. 2022). FAdV-4 has been detected 
and isolated in multiple wild bird species, including 
wild black kites, pigeons, wild geese, crows, and others 
(Kumar et al. 2010; Zhuang et al. 2023). The control and 
prevention of FAdV-4 spread still rely on laboratory diag-
nostic methods (Shao et al. 2019). However, in some tiny 
farms and fields, the lack of sophisticated instruments 
and specialized technicians for timely diagnosis leads to 
disease transmission. Therefore, there is an urgent need 

Fig. 3  Optimization of the RAA-CRISPR/Cas12a system. A Images under UV and blue light at different reaction times. B The fluorescence intensity 
at different reaction times. C Images under UV and blue light at different RAA reaction times. D The fluorescence intensity of different RAA reaction 
times. The error bars represent the SEMs; n = 3. *, p < 0.05; **, p < 0.01. ns, no significant difference
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to develop an accurate, rapid, portable diagnostic method 
to detect FAdV-4 effectively, which may contribute to 
preventing and controlling FAdV-4 transmission.

Although several FAdV-4 detection methods are 
currently in use, there are limitations in their clini-
cal application. Serological detection methods, such 
as enzyme-linked immunosorbent assays, are unable 
to detect positive samples in the early stages of FAdV-4 
infection because of their low specificity and sensitivity 
(Tabatabaei and Ahmed 2022). Other room-temperature 
amplification methods, such as loop-mediated isothermal 
amplification and recombinase polymerase amplification, 
can occasionally yield false positives, greatly affecting 
detection accuracy (Jaroenram and Owens 2014). Tradi-
tional PCR and qPCR require sophisticated instruments, 
which are not suitable for field use (Chen et al. 2023). The 
combined use of CRISPR/Cas12a technology addresses 
these issues, as the ssDNA reporter generates a positive 
signal, whereas Cas12a recognizes the intended target 
and activates the nonspecific cleavage properties of the 
ssDNA reporter, thereby overcoming the possibility of 
false positives (Tanny et  al. 2023). The CRISPR/Cas12a 
system was used to detect hepatitis B virus with a high 
sensitivity of 1 copy/μl (Ding et al. 2021). Wuyin Zhang 
et al. used the CRISPR/Cas12a system to detect porcine 
circovirus type 3, and the method has high sensitivity 

for detection down to seven copies and no cross-reac-
tivity with other types of porcine circovirus (Yu et  al. 
2024). The CRISPR/Cas12a system was used to generate 
the pseudorabies virus. By targeting the gB, gE and TK 
genes of pseudorabies viruses, the method can distin-
guish infected, uninfected, and vaccinated swine (Wang 
et  al. 2024). The hexon gene is divided into conserved 
pedestal regions (P regions), which express the conserved 
protein located inside the virion, and variable regions (L 
regions), which express the loop protein located on the 
outer surfaces between subtypes to form type-specific 
epitopes (Ganesh et  al. 2001). Hexion genes are widely 
used to analyze the genetic evolutionary relationships 
and subtype classification of FAdV (Zhang et  al. 2018). 
In this study, the highly conserved regions of the hexon 
gene were chosen as targets to design RAA primers and 
crRNAs. The method is highly specific, and it does not 
cross-react with common FAdVs (1, 4, 7, 8a, 8b, 9 and 10 
subtypes) or other pathogens, such as AIV. RAA/Cas12a 
is as sensitive as qPCR but does not require sophisticated 
instruments and takes less than 1  h. The lowest detec-
tion limit of RAA/Cas12a was only 1 copy. All of these 
advantages contribute to clinical diagnosis and wide 
application.

FAdV-4 can be transmitted from farm poultry to wild 
birds, and wild birds may also serve as reservoirs of 

Fig. 4  Specificity and sensitivity of the RAA/Cas12a-based diagnostic method. A The specificity of the the proposed method for FAdV-4 
was measured relative to that of 15 species of bird virus. B The fluorescence intensity was used to determine specificity. C Various concentrations 
of pMD-19 T-hexo were used as templates to assess sensitivity. D End-point fluorescence intensity was used to determine sensitivity. NTC, 
no template control. The error bars represent the SEMs; n = 3. ***, p < 0.001
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FAdV-4 (Mo 2021). Previous reports have shown that the 
positive rate of FAdV-4 infection was 16.87% in duck and 
chicken clinical samples (Andavar et  al. 2023). Another 
report revealed that 80% of serum samples from crows 
were positive for FAdV-4 (Manzoor et al. 2013). Here, we 
found that farm poultry are sensitive and maintain high 
infection rates of FAdV-4, with broiler chicken samples 
collected from China showing a positive rate of 27.97%. 
In wild birds, we report for the first time that wild geese 
have a high infection rate of FAdV-4, as detected by the 

RAA/Cas12a method. The percentage of nucleic acid-
positive individuals was 67.86% in pigeons and 4% in 
crows. The FAdV-4 strains isolated from chickens and 
waterfowl presented minimal genetic variation, suggest-
ing the potential for cross-species transmission among 
chickens, ducks, and other avian species. Considering 
the bidirectional viral transmission pathways of FAdV-4 
between domestic poultry and wild birds, continuous 
global surveillance for fowl adenovirus is imperative (Pan 
et al. 2017b).

Fig. 5  accuracy calculation of the RAA/Cas12a-based diagnostic method via qPCR. A Results of the qPCR assay and RAA/Cas12a method for clinical 
samples 1–30. The results of qPCR are shown as the ct value. A ct value less than 30 was considered a positive sample. The fluorescence intensity 
of RAA/Cas12a is shown. B Results of the RAA/Cas12a method for clinical samples. The images were captured under UV and blue light. C Venn 
diagram of the results of qPCR and RAA/Cas12a, which were used for the detection of FAdV-4 in clinical samples. NTC, no template control. FI value, 
fluorescence intensity value

Table 1  Positive rates (%) of FAdV-4 detected by RAA/Cas12a

Background Farm poultry Wild birds Totol

Broiler chickens Laying hens Duck Geese Pigeon Wild goose Crow

FAdV-4
positive rate

27.97 20.81 4.35 18.75 67.86 47.46 4.0 30.78

66/236 41/197 1/23 3/16 57/84 28/59 1/25 197/640
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Conclusion
We reported an RAA-CRISPR/Cas12a method for 
the convenient and sensitive detection of FAdV-4. It 
offers significant advantages, including speed, simplic-
ity, and low cost, making it suitable for the establish-
ment of mobile testing stations in the field. Using this 
method, we investigated the positive rates of FAdV-4 
in common farm poultry and wild birds. Our results 
indicated that some wild birds, such as pigeons and 
wild geese, can be infected with FAdV-4, suggesting 
that wild birds may serve as specific reservoirs for the 
virus.

Methods
Viral strains
The viral strains FAdV-1, FAdV-4, FAdV-7, FAdV-8a, 
FAdV-8b, FAdV-9, FAdV-10, infectious bursal disease 
virus (IBDV), Marek’s disease virus (MDV), avian 
infectious laryngotracheitis virus (ILTV), subgroup 
J avian leukosis virus (ALV-J), infectious bronchitis 
virus (IBV), Newcastle disease vaccine (NDV), and H5 
and H7 subtype avian influenza viruss (H5 AIV and H7 
AIV) were stored in our laboratory.

Clinical samples
Tracheal and cloacal swabs, as well as fecal samples, 
were collected from broiler chickens, laying hens, 
ducks, geese, pigeons, wild geese, and crows in central 
China from 2020–2024. The samples were categorized 
according to the species of birds. The farm poultry 
samples included 236 from broiler chickens, 197 from 
laying hens, 23 from ducks, and 16 from geese. The 
wild bird samples included 84 samples from pigeons, 
59 from wild geese, and 25 from crows. The swabs or 
0.5 g of fecal samples were mixed with 0.5 ml of PBS. 
After thorough mixing by vortexing, the supernatant 
was centrifuged at 10,000 × g. A commercial TIAN-
amp Virus DNA/RNA Kit (Tiangen, Beijing, China) 
was used to extract DNA from the samples for further 
detection.

Standard plasmid construction
The hexon sequence of FAdV-4 was  chemically syn-
thesized (Sangon Biotech, Wuhan, China). The hexon 
sequence was subsequently fused into the pMD19-T 
plasmid (Takara, Dalian, China), which was subse-
quently named pMD19-T-hexon. The copy number of 
pMD19-T-hexon was calculated via the following for-
mula: pMD19-T-hexon copy number = (6.02 × 1023 × plas-
mid concentration (ng/μl))/(660  Da/base pair × plasmid 
length × 109).

Recombinase‑aided amplification (RAA) primers, crRNA 
and DNA reporter design
The hexon sequences of the representative and clas-
sic and emerging isolated FAdV-4 strains (acces-
sion numbers: KU587519.1, KU991797.1, KP295475.1 
KX364099.1, LC628937.1, KX364099.1, and KY636400.1) 
were analyzed via MegAlign software. The highly con-
served regions of the hexon gene were chosen as targets 
to design RAA primers and crRNAs. The website https://​
ezass​ay.​com/​primer was used to design RAA primers, 
and the website http://​www.​rgeno​me.​net was used to 
design crRNAs.

The real-time fluorescent probes used included FAM 
(fluorophore) and BHQ1 (quencher). FAM-BHQ1-
labeled single-stranded DNA (ssDNA) reporters, RT-
RAA primers, and crRNAs are listed in Table 2 and were 
synthesized by Sangon Biotech.

RAA reaction of viral DNA
The amplification of the FAdV-4 hexon genes was per-
formed with commercial RAA basic (Cat. No. HP80201, 
HuicH Gene Biotechnology Co., Ltd., Shanghai, China). 
Briefly, 15.0 μl of master mixture, 8.0 μl of water, and 5 μl 
of RAA primers (10 μM) were added to an RAA pellet to 
dissolve the enzyme, and then, 1 μl of extracted sample 
DNA was added and vortexed to mix thoroughly. The 
reactions were incubated at the appointed temperature in 
a water bath for 20–30 min.

CRISPR/Cas12a‑based detection of RAA‑amplified products
The RAA-amplified products were used for Cas12a-
mediated cleavage. Briefly, 5  µl of RAA product was 
transferred to 20  µl of CRISPR/Cas12a-mediated cleav-
age reaction mixture with 500 nM Cas12a protein (kindly 
provided by Prof. Xueyan Sun, Wuhan Institute of 

Table 2  Primers and probes

Primers Sequences (5′–3′)

crRNA-1 UAA​UUU​CUA​CUA​AGU​GUA​GAU​ACA​AGT​TCA​GAC​
AGA​CGG​TCG​T

crRNA-2 UAA​UUU​CUA​CUA​AGU​GUA​GAU​GCC​CAC​CCG​AAA​
TGT​CAC​GAC​AGAA​

crRNA-3 UAA​UUU​CUA​CUA​AGU​GUA​GAU​GAA​AAA​CAA​GTT​
CAG​ACAGA​

RAA-1F ATC​GCG​GGC​CCC​GGG​ACG​CGCG​

RAA-1R CGT​TGA​GCC​TTT​TCT​GTC​GTG​ACA​TTT​CGG​G

RAA-2F GCG​AAT​ACC​TCT​CTG​AGG​ACC​TCC​AAC​AGT​

RAA-2R GAT​TTG​CAG​CCG​TTG​AGC​CTT​TTC​TGT​CGT​G

RAA-3F CGG​CTC​CAG​TAT​TTT​CAC​ATC​GCG​GGC​

RAA-3R CGT​TGA​GCC​TTT​TCT​GTC​GTG​ACA​TTT​CGG​G

ssDNA reporter FAM-TTT​TTT​-BHQ1

https://ezassay.com/primer
https://ezassay.com/primer
http://www.rgenome.net
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Technology), 500  nM crRNA, 500  nM ssDNA reporter, 
and 1 × NEB buffer 2.1 (New England Biolabs, Ipswich, 
MA). This mixture was incubated for 20  min at 37  °C. 
The emitted fluorescence signal was detected by a Light-
Cycler 96 (Roche, USA) through direct visual observation 
with 800-ms UV light exposure or under blue light.

Sensitivity and specificity analysis of the RAA/Cas12a‑based  
detection method
Tenfold serial dilutions of pMD19-T-hexon (original con-
centration of 1 × 106) were used as samples to evaluate 
the sensitivity of this diagnostic method.

A total of 6 species of FAdV, including 1, 7, 8a, 8b, 9 l 
and 10 subtypes and the IBDV, MDV, ILTV, ALV-J, IBV, 
NDV, H5 AIVl and H7 AIV strains, were used as samples 
to perform RAA/Cas12a-based detection. FAdV-4-posi-
tive clinical samples were used as positive controls.

FAdV‑4 detection by quantitative real‑time PCR
DNA was extracted from clinical samples. The qPCRs 
were prepared in a final volume of 20 μl as follows: 10 μl 
of 2 × AceQ qPCR Probe Master Mix, primers at a final 
concentration of 0.25 µM, a TaqMan probe at a final con-
centration of 0.25 µM, 2 μl of DNA template and ddH2O 
to 20 μl. The cycle threshold (CT) value of each sample 
was observed. A standard curve was generated, and the 
correlation coefficient was calculated via Light Cycler 
software.

Abbreviations
PBS	� Phosphate-buffered saline
crRNA	� CRISPR RNA
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